Objective
Organisms develop through cell divisions generating clones that progressively organize to form different tissues. This process can be visualized as a cell phylogeny by lineage tracing. In order to track cell lineages, each cell division has to be permanently and uniquely marked. In model systems, this is done by genome editing. In humans this is not applicable, which has historically made impossible to accurately study cell phylogenies. Very recently, however, studies showed that human tissues contain a set of natural markers in the form of somatic DNA variants that permanently and cumulatively label every cell division during development. My work showed that somatic variants are reliable at tracking cell lineages directly in human tissues. Human brain development has historically been difficult to address since human-brain-specific features are hardly recapitulated in any existing model. My project now builds on the use of somatic variants to reveal the cellular processes that form the brain starting from available human material. Somatic variants will be identified at unprecedent sensitivity in a large set of human foetal tissues, including multiple different brain regions. In work package (WP)1, I will identify and study the lineage segregation steps defining the brain phylogeny starting from the zygote. Mathematical modelling will elucidate mechanisms of clone dynamics. In WP2, I will focus on the cerebral cortex and reconstruct cell phylogenies of neural progenitors and the distribution of cortical clones. Furthermore, I will compare normal versus overgrowth cortical malformation brains, where cell proliferation and migration are altered. In WP3, I will develop new strategies to simultaneously assess cell phylogenies and cell-type specification by identifying somatic variants in multi-omics data. This project will reveal the unfolding of the cellular lineages building the human brain, while providing a methodology that is applicable to any tissue and pathology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biological morphology comparative morphology
- natural sciences biological sciences genetics DNA
- medical and health sciences basic medicine pathology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75654 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.