Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Methane paradox revisited: Unravelling the impacts of eutrophication on microbial methane cycling in aquatic ecosystems

Objective

Aquatic ecosystems are a major source of the potent greenhouse gas methane, accounting for half of the global methane emissions. Biogenic methane is microbially produced in anoxic sediments and typically rapidly consumed by methanotrophic microorganisms, largely limiting emissions to the atmosphere. However, methane concentrations are often elevated in oxic surface waters of oceans and lakes (“methane paradox”). Aerobic methane production in surface waters might constitute a particularly important source of methane, which, due its proximity to the atmosphere, might escape the aquatic “microbial methane filter”. Yet, we currently lack a comprehensive understanding of the involved processes and microorganisms. Moreover, enhanced eutrophication of coastal ocean and lake ecosystems has been linked to increased methane emissions. Despite the immense importance of methane-cycling microorganisms in controlling emissions from these systems, we know remarkably little on how changes in environmental conditions affect their in situ activities.
The METHANIAQ project addresses these knowledge gaps by 1) resolving and quantifying aerobic methane production in surface waters of aquatic ecosystems with different trophic states, and 2) unravelling how eutrophication affects methane-consuming microorganisms in water columns of coastal ocean and lake ecosystems. To tackle these objectives, I will use an innovative combination of approaches, comprising in situ measurements of biogeochemical process rates, manipulation experiments under controlled laboratory conditions, and cutting-edge molecular methods to analyze microbial communities. The proposed approaches will provide an integrated view from the scales of enzymes and microorganisms to ecosystem-level processes spanning marine and freshwater ecosystems. I expect this cross-disciplinary project to generate essential insights into methane cycling dynamics in aquatic ecosystems and their effect on the global climate.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

UNIVERSITAT WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 497 792,50
Address
UNIVERSITATSRING 1
1010 WIEN
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 497 793,00

Beneficiaries (1)

My booklet 0 0