Project description
Leveraging gamma rays to shed light on gravitational waves
The detection and characterisation of low-frequency gravitational waves (GWs) can shed light on important open questions in physics, astronomy and cosmology. Historically, scientists have used radio telescopes to search for a GW background but noise, predominantly from the interstellar medium, complicates measurements. The ERC-funded GIGA project aims to leverage gamma rays which are not affected by this noise to overcome the barrier. The project intends to establish an ensemble of extremely stable rotating neutron stars to study GW background. They will also measure the interstellar medium’s properties and explore the energy-dependent couplings of dark matter. Outcomes should provide pioneering insight into the dynamics of supermassive black holes and their host galaxies.
Objective
When galaxies merge, do their central supermassive black holes also merge? How does the merger affect star formation and the evolution of galaxies? How does physics beyond the Standard Model of particles affect the Universe? The detection and characterisation of low-frequency gravitational waves (GWs) will address these fundamental and longstanding questions of astronomy and cosmology.
Supermassive black holes at the centres of merging galaxies are expected to form binary systems whose orbital motion generates GWs. A cosmological population of such systems combine to build up a GW background (GWB). Such a GWB is also expected if the Universe went through an inflationary period, providing a GW map just moments after the Big Bang. Pulsar timing arrays (PTAs), which are ensembles of extremely stable millisecond pulsars (rotating neutron stars), can be used to study this GWB.
Searches for the GWB have typically used sensitive radio telescopes. However, radio data exhibit complex noise processes, predominantly arising from the interstellar medium (ISM), that limit its sensitivity and introduce bias. Gamma rays are immune to the effects of the ISM and a gamma-ray PTA can overcome several of the limitations affecting radio data. GIGA will (a) establish a gamma-ray PTA and independently detect the GWB, (b) develop advanced inference techniques to distinguish its astrophysical origins, (c) measure properties of the ISM through multiwavelength studies, and (d) explore energy-dependent couplings of dark matter. Through these avenues, GIGA will also maximise the sensitivity of radio PTAs and provide crucial validation of their measurements.
The detection of the GWB will provide the first stringent constraints on the dynamical evolution of supermassive black holes and their host galaxies while advanced inferences techniques will aid in disentangling weaker astrophysical sources including cosmic strings and phase transitions, thus probing physics beyond the Standard Model.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy astrophysics
- natural sciences physical sciences astronomy physical cosmology galaxy evolution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3526 KV UTRECHT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.