European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

A Gamma-ray Infrastructure to Advance Gravitational Wave Astrophysics

Descripción del proyecto

Los rayos gamma arrojan luz sobre las ondas gravitacionales

La detección y caracterización de ondas gravitacionales (OG) de baja frecuencia puede arrojar luz sobre importantes cuestiones abiertas en física, astronomía y cosmología. Históricamente, los científicos han utilizado radiotelescopios para buscar un fondo de OG, pero el ruido, procedente sobre todo del medio interestelar, complica las mediciones. El equipo del proyecto GIGA, financiado por el Consejo Europeo de Investigación, pretende aprovechar los rayos gamma, a los que no afecta este ruido, para superar los obstáculos. En el proyecto se pretende establecer un conjunto de estrellas de neutrones en rotación extremadamente estables para estudiar el fondo de OG. También se medirán las propiedades del medio interestelar y se explorarán los acoplamientos dependientes de la energía de la materia oscura. Los resultados deberían proporcionar una visión pionera de la dinámica de los agujeros negros supermasivos y sus galaxias hospedadoras.

Objetivo

When galaxies merge, do their central supermassive black holes also merge? How does the merger affect star formation and the evolution of galaxies? How does physics beyond the Standard Model of particles affect the Universe? The detection and characterisation of low-frequency gravitational waves (GWs) will address these fundamental and longstanding questions of astronomy and cosmology.

Supermassive black holes at the centres of merging galaxies are expected to form binary systems whose orbital motion generates GWs. A cosmological population of such systems combine to build up a GW background (GWB). Such a GWB is also expected if the Universe went through an inflationary period, providing a GW map just moments after the Big Bang. Pulsar timing arrays (PTAs), which are ensembles of extremely stable millisecond pulsars (rotating neutron stars), can be used to study this GWB.

Searches for the GWB have typically used sensitive radio telescopes. However, radio data exhibit complex noise processes, predominantly arising from the interstellar medium (ISM), that limit its sensitivity and introduce bias. Gamma rays are immune to the effects of the ISM and a gamma-ray PTA can overcome several of the limitations affecting radio data. GIGA will (a) establish a gamma-ray PTA and independently detect the GWB, (b) develop advanced inference techniques to distinguish its astrophysical origins, (c) measure properties of the ISM through multiwavelength studies, and (d) explore energy-dependent couplings of dark matter. Through these avenues, GIGA will also maximise the sensitivity of radio PTAs and provide crucial validation of their measurements.

The detection of the GWB will provide the first stringent constraints on the dynamical evolution of supermassive black holes and their host galaxies while advanced inferences techniques will aid in disentangling weaker astrophysical sources including cosmic strings and phase transitions, thus probing physics beyond the Standard Model.

Régimen de financiación

HORIZON-ERC - HORIZON ERC Grants

Institución de acogida

STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Aportación neta de la UEn
€ 1 421 187,50
Dirección
WINTHONTLAAN 2
3526 KV Utrecht
Países Bajos

Ver en el mapa

Región
West-Nederland Utrecht Utrecht
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 1 421 187,50

Beneficiarios (2)