Project description
Fluid circulation for the future of robotics
Fluid circulation is a vital process used by both living organisms and machines for numerous functions, including efficient nutrient transport, temperature regulation and mechanical actuation. Despite its potential, the complexity of the mechanisms required for its use has historically hindered its widespread adoption. The ERC-funded ROBOFLUID project seeks to overcome these challenges by integrating fluid capabilities with electrical control technologies, aiming to propel robots and wearable technologies to new levels of advancement. The project will leverage solid-state pumps and electric fields to streamline the equipment necessary for fluid circulation. ROBOFLUID aims to develop technologies that benefit from the advancements in fluid circulation, paving the way for innovative applications in various fields.
Objective
Fluid circulation is ubiquitous in both living creatures and machines, and it serves multiple functions: temperature regulation, transport of nutrients, mechanical actuation. A beating heart is a soft pump that keeps animal alive through blood circulation.
ROBOFLUID will merge fluids capabilities with electrical control to equip robots and wearables with the superpowers of fluids. By untangling the interaction between intense electric fields and fluid mechanics, ROBOFLUID will develop a new class of solid-state fluidic devices where flow is directly driven in situ by electrical signals, and where fluid velocity, pressure and temperature are used to sense the device status and the environment.
The large number of components required to operate conventional fluidics (pumps, valves, tubing, plugs), have prevented its use in untethered systems. ROBOFLUID will overcome this limitation by means of solid-state pumps where fluids are directly accelerated by electric fields. Similarly, to robotic hearts, robotic fluids will drive (1) new strong and robust artificial muscles, (2) wearable coolers and (3) active textiles for movement support and haptics.
ROBOFLUID will leverage our experience with soft robotics, electroactive materials and solid-state pumping based on Electrohydrodynamics (EHD). By bringing these fields together and bridging them with emerging active fibers technologies for wearables, we aim to create new scientific understanding of fluid mechanics and field emission in liquids under high electric fields and to create new ground-breaking functionalities for robots and wearables.
We will create (1) robust, high-power-density fluidic muscles that will make low-cost dexterous robotic hands possible, (2) wearable coolers to reduce energy consumption from air conditioning and to protect fragile people during extreme heat waves, (3) textile artificial muscles to facilitate daily actions in the elderly and to enable remote physical interactions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology materials engineering textiles
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
70126 BARI
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.