Project description
Solar-driven artificial photosynthesis for chemical industries
Chemical industries require assistance integrating renewable energy sources into their processes. The EU-funded PHOTOSINT project aims to produce hydrogen and methanol sustainably using only sunlight, wastewater and CO2. The process relies on solar-driven artificial photosynthesis, incorporating new catalytic materials developed to enhance efficiency. PHOTOSINT aims to maximise energy efficiency by concentrating and illuminating the semiconductor surface to improve conversion rates for industrial use. It also seeks to integrate perovskite solar photovoltaic cells to supply external electrical voltage. PHOTOSINT’s will assess the feasibility of scaling up renewable energy technologies, utilising methanol and hydrogen in engines, employing an high temperature proton exchange membrane fuel cell for electricity generation, and using hydrogen as an alternative fuel in melting furnaces, to reduce CO2 emissions.
Objective
The PHOTOSINT project presents solutions to the challenges chemical industries are facing in integrating renewable energy sources into their processes. The project will deliver sustainable processes to produce hydrogen and methanol as energy vectors using only sunlight as an energy source and wastewater and CO2 as feedstocks, making the industries more auto-sufficient. The pathway is based on solar-driven artificial photosynthesis, and aims to develop new catalytic earth-abundant materials and modifications of existing ones to improve catalytic processes. Design parameters of the PEC cell will be tuned to maximize solar to fuel (STF) efficiency. Moreover to improve the conversion for industrial implementation, PHOTOSINT will develop a novel way to concentrate and illuminate the semiconductor surface to maximize overall energy efficiency. Perovskite solar PV cells will be integrated to harvest the light to supply the external electrical voltage.
PHOTOSINT is an ambitious project due to precedents in research conducted to date and the low production rate of the desired products. For integrating sunlight energy into the industry, the catalyst will be studied, and then the best one/s will be implemented in prototypes. The obtained results will be used for making scale-up in pilots with tandem PEC cells. These steps are necessary to assess the industrial scale-up feasibility, promoting the increased competitiveness of renewable process energy technologies and energy independence. MeOH and H2 will be tested in engines. Also, an HTPEM fuel cell will be used for electricity generation, and hydrogen will be tested as an alternative fuel for energy generation instead natural gas in melting furnaces avoiding CO2 emissions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences organic chemistry alcohols
- engineering and technology environmental engineering energy and fuels
- natural sciences biological sciences botany
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.2 - Energy Supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2022-D3-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
41300 LA RINCONADA SEVILLA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.