Project description
Solar-driven fully renewable pyrolysis of biomass to make carbon-rich energy products
Biomass, with its high carbon content, is an eco-friendly and sustainable alternative to conventional hydrocarbons. Heating it in the absence or limited supply of oxygen (pyrolysis) converts biomass into valuable energy products: liquid bio-oil, solid biochar, and pyrogas. The EU-funded PYSOLO project plans to make this process fully renewable by supplying the required high-temperature process heat from concentrated solar power (CSP), supported by a thermal energy storage (TES) system for times when solar energy is insufficient. Two additional pathways will provide the heat when both CSP and TES are depleted: conversion of a fraction of the available pyrolysis product, and conversion of low-cost excess electricity from renewable energy sources including photovoltaic and wind via an electrical (induction) heating system.
Objective
PYSOLO (PYrolysis of biomass by concentrated SOLar pOwer) project aims at preparing the ground for a novel groundbreaking and fully renewable process combining concentrated solar power and biomass pyrolysis. Thanks to the use of solar heat in the pyrolysis process, the production of valuable products bio-oil, biochar and pyrogas can be maximized and the associated CO2 emission minimized, with economic and environmental benefits compared to conventional pyrolysis. The proposed system uses particles heat carrier, ensuring operational flexibility and avoiding the need of heat transfer surface in the pyrolysis reactor that facilitates the system scale-up.
Specifically, PYSOLO process aims at developing at TRL4 the two key unit operations of this novel solar pyrolysis system, namely: (i) the solar particle receiver and (ii) the pyrolysis reactor with the associated particle-char separator. The very innovative feature of PYSOLO lies in its innovative and unique coupling of pyrolysis technology with high temperature CSP system. This ground-breaking feature can potentially offer the following main advantages:
- delivering solar bio-oil, electricity or pyrogas and biochar for many energy and non-energy uses, when solar energy supplies the heat necessary for the pyrolysis process, either in sunny hours or by exploiting high temperature stored solids;
- run in self-mode the pyrolysis process (i.e. with electric heating or burning pyrogas and biochar), when solar energy is not sufficient and the TES unit is discharged;
- providing balancing services to the electric grid:
1. from the conversion of the available pyrogas when solar energy or TES are sufficient to maintain the pyrolysis process running and the grid requires the generation of additional electric power;
2. by using low-cost excess electricity from non-programmable RES (i.e. PV and wind) and converting it in high temperature thermal energy via the induction electric heating system.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology mechanical engineering thermodynamic engineering
- engineering and technology industrial biotechnology biomaterials biofuels
- agricultural sciences agricultural biotechnology biomass
- engineering and technology environmental engineering energy and fuels energy conversion
- engineering and technology environmental engineering energy and fuels renewable energy solar energy concentrated solar power
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.2 - Energy Supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2022-D3-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.