Project description
Robotic solutions for efficiency gaps in manufacturing
In the heart of modern manufacturing, many production steps hinge on previous results, which makes their automation difficult, causing inefficiencies and resource wastage. Typical examples include inspection and rework stages, where rework depends on the deviations that were found. With this in mind, the EU-funded SeConRob project will address the challenge of non-automatable manufacturing steps that rely on previous outcomes. Pioneering self-configuring robotic processes and using AI-driven data analysis, the project will extract insights from inspection data, generating robot programmes and parameters for downstream tasks. A feedback loop, powered by reinforcement learning, will refine the process in the long term. Test cases will encompass multi-stage processes (inspection, gouging, welding, grinding, and polishing), and demonstrations will target sectors like automotive and aerospace.
Objective
The SeConRob project aims at developing methods for the self-configuration of robotic processes, where each manufacturing step depends on the results of the previous step. In this case a lot of productivity, energy and resources are lost, because the processes currently cannot be automated for technical and economic reasons. Such situations typically occur during inspection and re-work, where the (downstream) re-work process depends on the results of the (upstream) inspection process of each individual part. SeConRob will develop technologies that enable the automation of such processes, by creating robotic processes that can be automatically configured for each individual part. This will build upon AI-based data analysis that extracts information from the inspection data, that used in turn to automatically generate a robot program and process parameters for the downstream re-work process. Physical process models will the basis for the initial planning and a long-term feedback loop based on reinforcement learning will be established to optimize the process and account for properties that are not included in the initial model.
Two use cases with multi-stage manufacturing processes including inspection, gouging, welding, grinding and polishing will provide test cases for the developments. Demonstrations are planned on a real-world production line to raise interest in sectors such as automotive and aerospace, where safety-critical parts are manufactured. The estimated market potential for such multi-stage self-configuring robotic process is about 2000 robotic workcells, corresponding to a market of 600 M€.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences sociology industrial relations automation
- social sciences economics and business economics production economics productivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.5 - Artificial Intelligence and Robotics
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-IA - HORIZON Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4407 Steyr
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.