Project description
De novo construction of a synthetic minimal lifelike system
Scientists have long dreamed of creating living systems de novo, or from scratch. However, the sheer volume of data, expertise, and research required to achieve this goal made it seem impossible. Recent advancements in technology and research have changed this. The ERC-funded MiniLife project aims to develop the first synthetic chemical systems that encompass all core features expected of synthetic living systems, from self-sustainability to inheritance systems. The project will leverage its expertise in chemistry and biology, along with the strengths of a robust consortium of collaborators with access to essential technologies, research, and experts, to achieve a groundbreaking milestone in basic science.
Objective
The de novo creation of living systems is a long-standing dream of humanity. To realise this dream, we need a clear conceptualisation of the goal and the experimental means to put it to practice. We think now, time is ripe to make a serious attempt. There is emerging consensus that a minimal living system should be out-of-equilibrium and self-sustaining, have metabolism, an inheritance system, a boundary to keep the constituents together and that a population of such systems should be able to undergo Darwinian evolution. The aim of this proposal is to develop, for the first time, synthetic chemical systems with all of these features.
Due to its very nature MiniLife is standing on two, equally strong feet: chemistry and biology. The strongest link between them is autocatalysis, which allows reproduction. Our approach to creating the first artificial chemical living system takes the following steps: (1) Identification of new, and development of existing, autocatalytic (super)systems that function as chemical (and informational) replicators. (2) Coupling of metabolism with chemical replicators. (3) Coupling of autocatalysis to compartment growth and division. (4) Synthesis of a chemical supersystem comprising all three components (replication, metabolism and compartmentalisation). (5) Demonstrating minimal Darwinian evolution upon subjecting the systems synthesized in 1-3 to out-of-equilibrium selection regimes. (6) Approaching a minimal living system by enhancing of the evolvability of the triple systems developed in 4.
We have assembled a strong consortium that brings together PIs of previous ERC Advanced Grants in three key areas to be integrated: Ashkenasy and Otto bring expertise in synthetic chemical self-replicating systems; Griffiths brings expertise on compartmentalisation using microfluidics, and Szathmáry is a leading expert on theory of replicator evolution and computational modelling.
Success would constitute a landmark achievement in basic science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-SYG - HORIZON ERC Synergy Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-SyG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
82343 Pocking
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.