Objective
HYROPE proposes to combine unique, fundamental skills of four European laboratories to perform atmospheric and high-pressure experiments coupled to high-performance simulations of an innovative concept for gas turbines to burn zero-carbon, hydrogen-based fuels. Due to their high-power density, it would be a potential game-changing technology that can deliver energy on demand for both power and aviation. Gas turbine technology has evolved from an abundance of hydrocarbon fossil fuels but has the unique potential to be fuel flexible and burn renewable, zero-carbon hydrogen-based fuels such as hydrogen or ammonia. However, these fuels raise several fundamental issues as they have very different combustion properties and emission properties when compared to hydrocarbon fuels. Hydrogen is highly diffusive, extremely reactive, and its turbulent burning rate exhibits an unexplained strong pressure dependence. Predicting whether hydrogen flames that are stable at atmospheric pressure will be stable at higher pressures, as needed in gas turbines, remains an unsolved fundamental problem. Ammonia is a convenient hydrogen carrier that can be partially decomposed to hydrogen but requires careful control of NOx emissions. How to handle the effects of pressure on these fuels is a major gap in our scientific knowledge. HYROPE will study the effects of pressure on the combustion of hydrogen-based fuels in a fuel flexible, staged combustion approach where the first stage is controlled by flame propagation and the second one by autoignition. This configuration offers enormous potential that has not yet been exploited for such fuels. This can only be achieved through a joint work combining state-of-the-art tools, from novel experimental facilities at high pressures, advanced optical diagnostics to high-performance computing. The project will accelerate the development of new, high-power density, fuel-flexible combustion systems and unleash the potential of zero-carbon gas turbines.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences organic chemistry hydrocarbons
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-SYG - HORIZON ERC Synergy Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-SyG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7491 Trondheim
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.