Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Myopia - from genes and environment to cellular responses and treatment

Project description

Unlocking new pathways for myopia prevention and therapy

Vision is regulated by biochemical pathways that control eye growth: an inhibitory pathway that suppresses eye growth, activated when images focus in front of the retina, and a stimulatory pathway, triggered when images focus behind it. Individuals suffering from myopia or near-sightedness see far-away objects blurry and current treatments offer only limited benefits. With the support of the Marie Skłodowska-Curie Actions programme, the MyoTreat project aims to explore environmental and genetic factors influencing myopia. Researchers will undertake interdisciplinary research and combine it with AI-driven diagnostics to identify new pharmacological targets and develop biomarkers for early detection. The goal is to advance myopia therapy through innovative strategies that regulate eye growth.

Objective

"In modern industrial societies, myopia has become an important ocular health problem of young people, due to its increased incidence and associated complications, which pose a significant risk of blindness already in the middle life span. Current treatment options have limited effects with a maximum reduction of axial elongation by about 0.4 mm over several years, equivalent to a reduction in myopia by only about 1 D. Eye growth is controlled by an interplay of different biochemical pathways, one inhibitory (stimulated by image plane in front of the retina) and one stimulatory (image plane behind the retina). A novel future strategy would be to activate the inhibitory pathways rather than inhibit the growth stimulating pathways (standard target in most studies). At present, interventions to activate growth inhibition are poorly studied. The influence of environmental factors (spectral composition of ambient light) and gene-environment interactions (specific gene variants and their interaction with key lifestyle exposures) on eye growth and refractive development will be investigated. New pharmacological targets will be identified and tested, and biomarkers established to detect the onset of myopia at an earlier stage. It will be studied how choroidal hypoxia relates to choroidal thinning and axial eye growth and how it interacts with the metabolic processes in the retina and sclera. New measurement techniques will be developed that implement artificial intelligence algorithms to improve diagnostics in myopia studies, especially in the periphery of the visual field. The proposed intersectorial and interdisciplinary ""MyoTreat"" project (including anatomy, physiology, pharmacology, optics, and genetics) will train PhD students in myopia research and generate and disseminate novel research results. The ultimate scientific goal is to identify new strategies for myopia therapy through hypothesis-driven translational research in various animal models as well as in humans."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-DN-01

See all projects funded under this call

Coordinator

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 521 078,40
Address
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Germany

See on map

Region
Baden-Württemberg Tübingen Tübingen, Landkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (5)

Partners (6)

My booklet 0 0