Project description
Metal additive manufacturing for severe exposure environments
The diminishing reserves of natural metal resources and the unsustainable production and processing of metal, which demand substantial energy, water and chemical usage, highlight the urgency for innovative solutions in the industry. Metal additive manufacturing (AM) holds promise as a solution, but current versions require consistent metal quality. The MSCA-funded DurAMat project will address this issue by developing AM solutions that facilitate the use of various alloys and metal functionalisation, thereby making AM a preferred choice for repairing obsolete metallic products. Ultimately, this project will enhance knowledge about AM and enable the utilisation of metal AM in harsh environmental conditions.
Objective
The current industrial approach to create metal products is unsustainable. Massive amounts of energy consumption, chemicals, water and the exhaustion of natural metal resources are the hallmark of metal production and processing industries. Metal Additive Manufacturing (AM) presents an opportunity to ameliorate metal processing and product manufacturing. While this is a known fact, a full scale industrial implementation of metal AM has been impossible until now due to the lack of consistent AM metal quality.
DurAMat is the game-changer that will engender long-lasting performance properties of AM products used in severe exposure environments. DurAMat research will i) develop AM components from different alloy families sustainably ii) enable AM as preferred repair method for defunct metallic products and iii) enable AM for metal functionalisation. DurAMats research combines experimental research with multiscale modelling and machine learning (ML) methods.
DurAMat fills important knowledge gaps and will innovate AM metals (duplex steel alloys for marine, magnesium for bioresorbable implants) and coatings (biocomposite and AM metal coatings for corrosion and mechanical performance), technologies and services (AM for repair, ML for corrosion inhibitor selection), three computational models (multiscale and ML) and one device (add-on for Wire Arc Additive Manufacturing microstructure control).
The DurAMat consortium consists of 6 Universities, 2 Research Centres and 5 Industrial Companies from 6 European Countries. It will train 10 doctoral candidates in a holistic approach, encompassing cross-disciplinary scientific knowledge transfer, teaching activities and cultivating interpersonal and transferable skills.
DurAMats impact forecasts, among others, a 30% energy reduction in the processing and manufacturing of products, 60% less end-product failures reducing health hazards, eco pollution and casualties, and 20% cost benefit compared to conventional industry approaches.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural scienceschemical sciencesinorganic chemistryalkaline earth metals
- engineering and technologymaterials engineeringcoating and films
- natural sciencesearth and related environmental sciencesenvironmental sciencespollution
- medical and health sciencesmedical biotechnologyimplants
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral NetworksCoordinator
1050 Bruxelles / Brussel
Belgium