Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Understanding, Predicting and Enhancing the Stability of Organic Photovoltaics

Project description

New strategies to strengthen organic photovoltaic stability

Photovoltaics play a crucial role in the battle against climate change. Organic photovoltaics (OPV) stand out for their cost-effectiveness and high power-conversion efficiencies, but their long-term stability needs to be improved. The EU-funded OPVStability project aims to comprehend the degradation mechanisms and factors contributing to stability in organic photovoltaic materials and solar cells. It will develop tools for estimating the lifespan of organic solar cells, for the identification of stable structural motifs and device architectures, and for exploration of innovative strategies to enhance the stability of the next-generation efficient OPVs. In collaboration with academic and industrial partners and while delivering training to 10 PhD students, OPVStability will employ advanced methods such as machine learning to strengthen the stability of OPVs.

Objective

Photovoltaics is a major pillar in tackling climate change, one of the biggest current threats to humankind. Organic photovoltaics (OPV) could significantly contribute to this, as organic solar cells can be manufactured in efficient and low-cost roll-to-roll processes and are already reaching power conversion efficiencies above 19%. However, in order to have a large impact, the long-term stability OPV has to be improved to obtain lifetimes of many years.
Therefore, OPVStability aims to develop (i) an in-depth understanding of the degradation mechanisms and stability-promoting factors of organic photovoltaic materials and solar cells, (ii) tools to predict the lifetime of organic solar cells and to identify stable structural motifs as well as device architectures and (iii) innovative strategies to significantly enhance the stability of efficient OPV of the next generation.
OPVStability combines partners from academia and industry with a strong background in OPV and/or specialized scientific methods including theoretical calculations and simulations, experimental degradation studies on single materials, materials combinations and interfaces, accelerated aging and outdoor stability measurements, advanced synchrotron-based analytics, high-throughput experiments and machine learning approaches.
Within OPVStability, ten PhD-students work on this timely and interdisciplinary research project accompanied with an excellent training program comprising scientific skills as well as a comprehensive set of soft and transferable skills.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-DN-01

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITAET GRAZ
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 270 331,20
Address
RECHBAUERSTRASSE 12
8010 Graz
Austria

See on map

Region
Südösterreich Steiermark Graz
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

Partners (8)

My booklet 0 0