Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

POLARSENSE: Polaritonic compact gas sensor demonstrator

Project description

High performance, compact optical gas sensor leverages polaritons

Detecting gases and particles is critical to many applications, such as environmental and health monitoring. Ensuring efficiency and effectiveness requires small, portable devices with very high sensitivity, selectivity, and speed, together with low power consumption and compatibility with conventional CMOS technology. The ERC-funded POLARSENSE project aims to address these specific unmet needs with an infrared gas sensor demonstrator chip based on an innovative graphene electro-polaritonic platform. The team will integrate the CMOS-compatible, multi-gas detection system with the optically active elements and an electrical detector in a single device, eliminating the need for an external photodetector. The demonstrator will be validated using gas mixtures typical of breath analyser and environmental monitoring applications.

Objective

Monitoring gases and particles through the use of smart sensors has a crucial role in a wide range of applications, from environmental control to breath analysis for diagnostics. With the information provided by these sensors, we are able to predict, prevent and act in potentially dangerous situations. In order for the data to be effectively transferred, the gas sensors must be integrated into portable devices with wireless connectivity, and must be miniaturized concurrently. To meet this requirement, the sensors must possess high sensitivity, selectivity, speed, ultra-low power consumption, and compatibility with silicon technology. However, currently no existing technology on the market fulfils all of these criteria. POLARSENSE aims out to develop an optical (infrared) gas sensor demonstrator chip based on a novel graphene electro-polaritonic platform that is designed to address all of the aforementioned technical and commercial requirements. This will be demonstrated through its functionality and performance, with the capability of detecting multiple gases in a scalable, CMOS compatible system with a sensitivity of 0.1 ppm, alongside specific optically active elements and an electrical detector all integrated within one single device. The result is a highly compact and efficient sensing platform that does not require an external photodetector. To achieve this, POLARSENSE will simulate, design, and fabricate a demonstrator chip in accordance with the specifications of our industrial partners, and test with a compact interferometer with a broadband infrared source to evaluate the performance.
We will then validate the sensing performance of the demonstrator system with acetone gas in a matrix containing different concentrations of ethanol and/or water vapor that are typically present in breath analyzer and environmental monitoring applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-POC

See all projects funded under this call

Host institution

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0