Project description
Research bridges ion and heat transport mechanisms in ionic materials
Ion and heat transport in ionic conductors are traditionally viewed as separate phenomena. Ion transport involves local jumps, whereas heat transport is being mediated by dynamic lattice vibrations called phonons. However, recent research has highlighted gaps in this understanding, particularly in how phonons interact with mobile ions. This suggests that current models may be incomplete. The ERC-funded DIONISOS project will investigate how local vibrational modes, quantised as diffusons, govern both ion and heat transport. By analysing specially designed materials, researchers should establish a unified analytical relationship between these processes. Their research could help advance the design of high-performance materials and deepen our understanding of how local structural dynamics influence global material properties.
Objective
In DIONISOS, we aim to develop new analytical relationships for ion- and heat-transport in ionic
conductors, and thus heal significant inconsistencies of the current understanding. Currently ion- and
heat transport are interpreted as unrelated phenomena; ion transport being based on local jumps,
whereas heat transport being mediated by dynamic lattice vibrations called phonons.
Among other studies, my pioneering works in the field of solid ionic conductors (J. Am. Chem. Soc.
2017, J. Am. Chem. Soc. 2018) opened discussions about plausibility-gaps in state-of-the-art
concepts, in particular regarding interactions of phonons with mobile ions. Our work has shown that
by tailoring the lattice dynamics and vibrational properties of materials, the ionic transport can be
affected, which cannot be explained well by current models.
To this end, we propose to analyze both ion- and heat-transport in several representative materials,
designed for the purpose, to test our hypothesis that it is not a classical phonon phenomenon, but
rather local vibrations, quantized by the diffuson, that dominate the heat and ionic transport in fast
ionic conductors.
DIONISOS will thus provide an in-depth fundamental understanding of how local vibrational modes
connect thermal to ionic transport, and ideally a new analytical relationship. A unified understanding
of thermal transport and ionic transport will pave the way for further research on how local structural
phenomena affect global materials properties. In addition, a theory of linking local ionic motion with
local thermal motion will be of vast value for the design of high-performance functional materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
48149 Muenster
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.