Descripción del proyecto
Avanzar en el estudio de las estructuras geométricas
El estudio de las estructuras geométricas de variedades, muy influido por el programa de Klein de Erlangen de 1872, ha experimentado grandes avances y amplias aplicaciones en topología geométrica. Además, tiene profundas conexiones con varios campos, como la topología de baja dimensionalidad, la geometría diferencial, la geometría compleja y la teoría de la representación. El proyecto GENERATE, financiado por el Consejo Europeo de Investigación, tiene como objetivo lograr avances significativos en las estructuras geométricas pseudoriemannianas a través de un planteamiento novedoso que integra técnicas geométricas y analíticas. En el proyecto también se pretende alcanzar cuatro objetivos interconectados fundamentales para su investigación. Por último, se prevé que sus conclusiones y metodologías fomenten nuevos avances en este campo.
Objetivo
The study of geometric structures on manifolds finds its inspiration in Kleins Erlangen Program from 1872, and has seen spectacular developments and applications in geometric topology since the work of Thurston at the end of the 20th century. Geometric structures lie at the crossroads of several disciplines, such as differential and algebraic geometry, low-dimensional topology, representation theory, number theory, real and complex analysis, which makes the subject extremely rich and fascinating.
In the context of geometric structures of pseudo-Riemannian type, the study of submanifolds with special curvature conditions has been very effective and led to some fundamental questions, such as the open conjectures of Andrews and Thurston from the 2000s, and the recently settled Labouries Conjecture. This project aims to obtain important results in this direction, towards four interconnected goals:
1. the study of quasi-Fuchsian hyperbolic manifolds, in particular leading to the proof of a strong statement that would imply the solution of the conjectures of Andrews and Thurston;
2. the achievement of curvature estimates of L^2-type on surfaces in Anti-de Sitter space;
3. the construction of metrics of (para)-hyperKhler type on deformation spaces of (G,X)-structures, and the investigation of their properties;
4. the study of existence and uniqueness of special submanifolds of dimension greater than 2 in pseudo-Riemannian symmetric spaces.
The project adopts an innovative approach integrating geometric and analytic techniques, and the results will have remarkable applications for Teichmller theory and Anosov representations.
In the long term, the proposed methodology and the expected results will lead to further developments in various related directions, for instance: the study of pseudo-Riemannian manifolds of variable negative curvature, of higher dimensional pseudo-hyperbolic manifolds, and the deformation spaces of other types of (G,X)-structures.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología
- ciencias naturales matemáticas matemáticas puras geometría
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2023-COG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
10124 TORINO
Italia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.