Descripción del proyecto
Aprendizaje automático para descubrir nuevas estructuras químicas tóxicas
Los estudios de exposición son una actividad fundamental de la investigación química. Se han identificado cerca de medio millón de sustancias químicas pertinentes para dichos estudios, y una cantidad notable de sus productos de transformación coexisten en el medio ambiente. Por desgracia, a pesar de esa amplia variedad, tan solo unas pocas de estas estructuras químicas se pueden crear «in silico», evaluar analíticamente y validar. Las bases de datos y los modelos de aprendizaje automático actuales se basan en estas estructuras químicas existentes. El proyecto LearningStructurE, financiado por el Consejo Europeo de Investigación, tiene por objeto revolucionar este campo mediante la combinación del aprendizaje automático con tecnologías novedosas para, de este modo, identificar nuevas estructuras químicas tóxicas. Esta iniciativa pretende agilizar el proceso de descubrimiento de nuevas estructuras químicas, haciéndolo más accesible, frecuente y eficiente.
Objetivo
Nearly half a million known chemicals have been deemed relevant for exposure studies and an even larger number of their transformation products are likely to co-occur in the environment. This mind-blowing number of possible chemical structures makes it impossible to in-silico generate all these structures, let alone synthesise and analytically confirm them, thereby limiting the discovery of novel chemicals. Today, the structural elucidation of chemicals detected with high resolution mass spectrometry relies on databases and machine learning models trained on the known chemical space. Both are fundamentally ill-suited for discovering novel chemical structures. As a result, only a few percent of the toxic activity of the environmental samples is explained by the currently known and monitored chemicals. It is crucial to access the novel chemical space to improve our understanding of the origin, fate, and impact of these chemicals.
The aim of LearningStructurE is to turn the discovery of novel chemical structures from serendipity to routine. As a steppingstone in this pursuit, I will combine the fundamental understanding of chromatography and high resolution mass spectrometry with machine learning to pinpoint novel toxic chemical structures based on their empirical analytical information. To significantly advance the predictive power of machine learning models for empirical analytical information, I will take advantage of the candidate structures as a sample specific training set for machine learning models. The improved predictive power will feed into in-silico structure generation, allowing to elucidate the structure directly from the empirical analytical information.
LearningStructurE will pave the way for exploration of the unknown chemical space detected from environmental samples, and thereby improve our understanding of the emissions, chemical processes transforming the emitted chemicals, and close the gap in measured and explained toxicity.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2023-COG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
10691 Stockholm
Suecia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.