Project description
Giant viruses with unprecedented capsid modifications: a role in adaptation
Most viruses have a handful of genes, supporting their replication and capsid production. The first ‘giant’ virus was discovered in 2003. Its genome encoded nearly a thousand proteins and it was visible with a light microscope. Since then, many more giant virus strains have been discovered. Despite learning much about their genetic diversity, scientists still know little about their capsid structures and infection mechanisms. The ERC-funded CAPSOLUTION project aims to characterise the unprecedented capsid modifications of two recently discovered giant viruses using structure–function studies of virus–host systems and evolutionary analyses of the viruses’ appendage-associated genes. It will shed light on the role of capsid modifications in adaptation to the environment.
Objective
How do viruses identify their hosts in a challenging environment? This question is highly relevant for protist-infecting giant viruses in aquatic ecosystems, where the density of host cells is typically low and random encounters are rare. Giant viruses have genome sizes of up to two megabases and encode a vast genetic diversity, but we know almost nothing about their diverse capsid structures and the various strategies they use for infecting the next host cell. During the last decade, I have shed light on the symbiotic interactions between marine flagellates, giant viruses and their virophage parasites.
With CAPSOLUTION, I will use our collection of freshwater flagellate cultures to characterize giant viruses with previously unknown capsid structures from oligotrophic lakes. We recently discovered two giant viruses with unprecedented capsid modifications: “Cometa virus”, whose capsid has a bundle of unique head fibers and a conical tail; and “Sentinel virus”, whose tentacle-like appendages span several micrometers. CAPSOLUTION will allow me to characterize the fascinating virion structures of Cometa and Sentinel viruses at molecular resolution and elucidate their function during host attachment and infection.
What is the protein composition of these appendages and how are they assembled? How did they evolve? How common and diverse are modified capsids among giant viruses and how do they adapt to environmental constraints? I will address these questions in a multi-disciplinary approach combining the morpho-genomic characterization of natural giant virus communities with structure-function studies of newly isolated virus-host systems and evolutionary analyses of their appendage-associated genes. CAPSOLUTION will reveal how giant viruses use unique capsid modifications to adapt to their environment, thereby breaking new ground in microbiology and expanding our horizon of virus functioning in freshwater lakes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- natural sciences biological sciences microbiology virology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences ecology ecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.