Project description
Unlocking new frontiers in our understanding of emergent states
In the world of tiny particles, like electrons in solids, forces between the particles can lead to strange behaviours called quantum states that single particles could not form. These states have sparked excitement for their potential in technology, like superconductors for powerful quantum computers. However, a lot remains to be studied about these states and surprising experimental discoveries shape this field of research. In this context, the ERC-funded Ixtreme project will explore how special forms of crystal asymmetry in materials might create new quantum states. Led by a team of experts, the project employs extreme conditions such as very low temperature, very high magnetic fields and high pressure to unravel the intricate interplay between asymmetry, strong forces between electrons, and superconductivity.
Objective
Strong correlations between electrons in solids lead to a variety of exotic quantum states like Mott insulator, unconventional high-Tc or odd-parity superconductivity. The groundbreaking discoveries of these states have not only generated huge advances in our understanding of condensed matter but also uncover a great potential for applications such as room-temperature superconductivity or quantum computing.
Symmetry is an important concept in classifying quantum states. So far, the majority of research has focused on global symmetry. I have recently discovered striking experimental evidence that local inversion symmetry breaking opens up a new route for the appearance of novel quantum states of matter. Namely, it can induce novel types of odd-parity superconductivity with possibly topological character, a much-needed state for topological quantum computing. However, the effect of local inversion symmetry breaking on quantum states still lacks our control and understanding.
In the Ixtreme project, I propose to generalise and exploit this concept by investigating materials with locally broken inversion symmetry as a platform of exotic quantum states. By measuring electric and thermal transport as well as magnetic properties in extreme conditions of very low temperature, high magnetic field and high hydrostatic and uniaxial pressure, the Ixtreme team will study and control the delicate interplay of local inversion-symmetry breaking with correlated electrons, magnetic and orbital degrees of freedom, topology, and superconductivity. Thereby, this project will establish new understanding of the physical properties of this promising novel class of unconventional metals and lead to new design methodologies for emergent states such as odd-parity superconductivity in locally non-centrosymmetric correlated electron systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
01069 Dresden
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.