Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Not Knowing in Deep Representation Learning

Descripción del proyecto

Resolver el reto de la «caja negra»

La mejora del aprendizaje automático y la inteligencia artificial lleva aparejado un aumento de la complejidad de los modelos, lo que los hace cada vez más opacos a la comprensión humana. Este fenómeno se conoce como el problema de la «caja negra». La opacidad surge de un problema de identificabilidad, en el que los modelos pueden expresar el mismo patrón de múltiples maneras diferentes dentro de sus representaciones internas. La falta de transparencia obstaculiza nuestra capacidad para comprender la información generada por los modelos, lo cual plantea un dilema: aceptar la inescrutabilidad de los resultados o sacrificar la complejidad del modelo. En este contexto, el proyecto NoKnow, financiado por el Consejo Europeo de Investigación, desplazará el foco de atención desde las representaciones a las tareas que estas resuelven. El equipo del proyecto NoKnow empleará herramientas de geometría diferencial e inferencia bayesiana para garantizar resultados identificables dentro de la representación múltiple.

Objetivo

Machine learning and artificial intelligence techniques are progressing at a tremendous pace and impressive results appear across scientific fields. However, as machine learning models grow in capacity, they become increasingly ‘black box’, and it becomes harder for humans to reason about the patterns discovered by the machine. A root cause of this difficulty is that most machine learning models can express the same pattern in infinitely many, equally good, ways within their internal representations of the world. This is known as an identifiability problem.

Today we lack a general solution to identifiability problems, and either give up on understanding the patterns discovered by the machine or reduce model complexity to lessen the problem. The latter also reduces the fidelity and applicability of the model. NoKnow rephrase the question of identifiability to be concerned with tasks solved by the representation rather than the representation itself. Using tools from differential geometry and Bayesian inference, we develop the theoretical tools to ensure that tasks solved in the representation have an identifiable outcome even if the representations themselves are not identifiable.

To turn theory into practice, we develop state-of-the-art algorithms for assessing the uncertainty of learned representations in order to indirectly estimate the topology of the representation manifold. We further develop novel, high-fidelity predictive models that have identifiable outcomes when trained on learned representations.

NoKnow provides the fundamental tools needed to engage with learned representations to guarantee identifiable outcomes. This, in turn, increase trust in findings as they are not dependent on arbitrariness in learned representations. As society increasingly automates decisions, this trust in machine learning becomes ever more important.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2023-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

DANMARKS TEKNISKE UNIVERSITET
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 999 114,00
Dirección
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Dinamarca

Ver en el mapa

Región
Danmark Hovedstaden Københavns omegn
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 999 114,00

Beneficiarios (1)

Mi folleto 0 0