Descrizione del progetto
Risolvere la sfida della «scatola nera»
Con il progredire dell’apprendimento automatico e dell’IA, aumenta la complessità dei modelli che diventano sempre meno comprensibili per l’uomo. Questo fenomeno viene definito il problema della «scatola nera». Questa mancanza di chiarezza deriva da un problema di identificabilità, per cui i modelli possono esprimere lo stesso modello in innumerevoli modi nelle loro rappresentazioni interne. Questa incomprensibilità ostacola la nostra capacità di comprendere gli spunti generati da questi modelli, facendo sorgere un dilemma: accettare l’imperscrutabilità dei risultati o sacrificare la complessità del modello. In questo contesto, il progetto NoKnow, finanziato dal CER, sposta l’attenzione dalle rappresentazioni stesse ai compiti da esse risolti. Avvalendosi di strumenti della geometria differenziale e dell’inferenza bayesiana, il progetto NoKnow garantirà risultati identificabili nella molteplicità rappresentativa.
Obiettivo
Machine learning and artificial intelligence techniques are progressing at a tremendous pace and impressive results appear across scientific fields. However, as machine learning models grow in capacity, they become increasingly ‘black box’, and it becomes harder for humans to reason about the patterns discovered by the machine. A root cause of this difficulty is that most machine learning models can express the same pattern in infinitely many, equally good, ways within their internal representations of the world. This is known as an identifiability problem.
Today we lack a general solution to identifiability problems, and either give up on understanding the patterns discovered by the machine or reduce model complexity to lessen the problem. The latter also reduces the fidelity and applicability of the model. NoKnow rephrase the question of identifiability to be concerned with tasks solved by the representation rather than the representation itself. Using tools from differential geometry and Bayesian inference, we develop the theoretical tools to ensure that tasks solved in the representation have an identifiable outcome even if the representations themselves are not identifiable.
To turn theory into practice, we develop state-of-the-art algorithms for assessing the uncertainty of learned representations in order to indirectly estimate the topology of the representation manifold. We further develop novel, high-fidelity predictive models that have identifiable outcomes when trained on learned representations.
NoKnow provides the fundamental tools needed to engage with learned representations to guarantee identifiable outcomes. This, in turn, increase trust in findings as they are not dependent on arbitrariness in learned representations. As society increasingly automates decisions, this trust in machine learning becomes ever more important.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura topologia
- scienze naturali matematica matematica pura geometria
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2023-COG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
2800 KONGENS LYNGBY
Danimarca
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.