Project description
Laser innovation to target outdated technology
In today’s tech landscape, lasers reign supreme, yet their potential is hindered by outdated designs. Many commercially available lasers are bulky, expensive relics, incapable of meeting the demands of modern applications. Most importantly, they lack the agility and precision required for tasks ranging from medical diagnostics to quantum technologies. In this context, the EIC-funded AgiLight project will pioneer integrated lasers spanning the blue to infrared spectrum. Using cutting-edge hybrid platforms and 3D printing, it promises power, precision, and unprecedented agility. With partners spanning academia and industry, AgiLight aims to reshape fields from atomic physics to distance sensing.
Objective
Lasers are ubiquitous in science and technology, with applications ranging from optical communications and quantum technologies to metrology and sensing and to life sciences and medical diagnostics. However, most commercially used lasers are still based on legacy optical schemes. These devices are either bulky and expensive limiting product development, or lack the ability to quickly sweep or precisely control the laser wavelength, which is key to many applications. At the same time, the advent of advanced photonic integration platforms such as silicon photonics has opened new perspectives, realized only for exascale data centers in telecommunication wavelengths around 1310 and 1550 nm.
AgiLight aims at establishing a new class of integrated lasers that can address the entire wavelength range from the blue (400 nm) to the infrared (2.7 µm). These devices rely on a hybrid integration platform that combines ultra-low-loss silicon nitride photonic circuits with advanced tuning actuators and with III-V gain elements, exploiting highly scalable assembly concepts based on 3D printing. The devices will offer high output powers (> 100 mW), down to Hz-level laser linewidths, and unprecedented frequency agility with nanosecond response times and wideband tunability. Comprising leading European research groups and high-tech start-ups as well as a major industrial player, AgiLight will translate ground-breaking research to rapid technology uptake and tailor laser systems for atomic and molecular physics and optics, distance ranging and sensing using the expertise of end-users. The project covers the theoretical and nanofabrication foundations of the envisaged light sources as well as their implementation and functional demonstration in highly relevant research applications throughout the visible and near-infrared spectrum. AgiLight will lay the foundation for an all-European value chain of a novel class of light sources, covering the III-V and low-loss PICs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2023-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
92190 MEUDON
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.