Project description
Identification of cell mechanobiology biomarkers
Physical forces and mechanical properties influence the behaviour, function, and development of cells and organisms. Biophysical biomarkers, including the ability of a cell to deform under pressure, highlight vital changes in disease progression and can be used for early disease detection. Despite current microfluidic techniques allowing high-throughput measurements, they fall short in providing comprehensive, multi-feature data from the same cell, hindering insights in mixed cell populations. Funded by the Marie Skłodowska-Curie Actions programme, the SameMultiPhys project aims to create custom microfluidic systems capable of measuring multiple cellular features simultaneously. The work is expected to deepen the understanding of cell mechanobiology, advancing biomarker identification for improved diagnostics.
Objective
Biophysical biomarkers of cell state can reveal physiologically relevant changes that occur during disease progression. For example, cell deformability, cytoskeletal and nuclear organization, and macromolecular crowding are biophysical parameters implicated in migration and growth, which are essential processes for cellular functions. As biophysical parameters reflect physio-pathological cell states, they have the potential to be used as biomarkers for early diagnostics and clinical treatments in medicine. Current techniques based on microfluidics can be used to perform biophysical measurements in a high-throughput manner. However, these systems are not able to provide multiparameter, biophysical and same-cell measurements, making it difficult to find insightful relationships in heterogenous cellular mixtures.
SameMultiPhys will develop and produce customized microfluidic systems to measure multiple features in the same cells and evaluate their potential applications as biophysical biomarkers. These new technologies will allow us to study multiscale biological questions of immune T cells from an interdisciplinary perspective and other cell lines. This project aims to facilitate the transfer of knowledge and resources between institutions with expertise in microengineering, materials science, chemistry, mathematics, biology, and biophysics to promote collaboration between researchers, and to develop innovative microfluidic technologies for mechanobiology. The project will involve state-of-the-art microfabrication techniques, deep-learning analysis of images, and computational modelling to develop and validate the technologies developed. The ultimate goal of this project is to gain a deeper understanding of the mechanobiology of cells, enabling progress toward more effective identification of biomarkers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences biophysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-SE - HORIZON TMA MSCA Staff Exchanges
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-SE-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.