Project description
Biosensor-based diagnosis of biotic and abiotic pollutants
Detecting abiotic and biotic pollutants is crucial for environmental applications. The EU-funded BIOSENSEI project aims to develop a biosensor platform that uses cellular responses to detect both types of pollutants. These biosensors will be encapsulated and immobilised on bi-modal transducers, enabling highly sensitive and reliable detection of target pollutants. Additionally, the project will create ultra-low power analogue front-ends and autonomous IoT end nodes for data acquisition, facilitating easy integration into existing LoRa networks and providing real-time data feeds. An online dashboard will allow end-users to visualise the data. Conducted within a safe-and-sustainable-by-design framework, the project will significantly contribute to the EU’s vision of zero pollution.
Objective
BIOSENSEI develops a real-time, multiplexed, end-to-end, tailored and reliable biosensor platform, using cellular responses, for detection of abiotic pollutants - Nutrients, Estrogenic endocrine-disrupting chemicals, and PFAS (Perfluoroalkyl and Polyfluoroalkyl Substances); and biotic pollutants - Microcystins. Cellular biosensors from bacterial variants will be genetically engineered using, RNA-RNA interactive and type III CRISPR-Cas-mediated transduction cascades. These biosensors are encapsulated and immobilised at bi-modal transducers (nanoelectrochemical and optical) to provide highly reliable, tuneable and sensitive detection of the target pollutants. Bespoke ultra-low power analog front ends and autonomous IoT end-nodes will enable operation and data acquisition from biosensors and facilitate easy integration in existing LoRa networks enabling real-time data feeds. Neural computing algorithms are embedded on the edge to correct for sensor aging and interferents in the (bio)chemical transduction and improve sensor data accuracy. An online dashboard will be developed to allow end users to visualize data. BIOSENSEI will embed the whole R&D process within a safe-and-sustainable-by-design framework to guarantee environmental safety related to risks of potential release into the open environment. Biosensors will be scalable, adaptable to different applications in water & soil and will be deployed in four different use-cases. The consortium is vertically integrated bringing expertise in cellular biology, surface chemistry, nanoelectronics fabrication, hardware integration, regulatory and industrial sampling and artificial intelligence. BIOSENSEI directly addresses HORIZON-CL6-2023-ZEROPOLLUTION-01-6 Biosensors and user-friendly diagnostic tools for environmental services and will allow cellular biosensors to be deployed outside laboratory settings for the first time the project and has the potential to considerably contribute to fulfil EU vision on zero-pollution.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- natural sciences computer and information sciences internet internet of things
- engineering and technology nanotechnology nanoelectronics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.6 - Food, Bioeconomy Natural Resources, Agriculture and Environment
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL6-2023-ZEROPOLLUTION-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
T12 YN60 Cork
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.