Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

INteractive robots that intuitiVely lEarn to inVErt tasks by ReaSoning about their Execution

Project description

Refining robotic skills through experience and human feedback

In the vast realm of AI, robotic capabilities have soared, yet navigating partially unknown environments remains their Achilles’ heel. Robots lack the cognitive finesse to seamlessly transfer tasks across varying domains. This limitation hinders their adaptability and problem-solving abilities. The EU-funded INVERSE project aims to advance robotic cognition and bridge the gap between expectation and execution in unexplored territories. Specifically, it uses continual learning, refining robotic skills through experience and human feedback. By mimicking human learning processes, INVERSE enables robots to understand, act, and predict consequences in diverse domains. Human supervision plays a pivotal role, streamlining the refinement loop for practical deployment. INVERSE’s effectiveness will be showcased in two real-world scenarios.

Objective

Despite the impressive advancements in Artificial Intelligence (AI), current robotic solutions fall short of the expectations when they are requested to operate in partially unknown environments. Most of all, robots lack the cognitive capabilities to understand a task to the point of being able to perform it in a different domain. As humans, during the learning process we gain deep insights on the execution of a process, which allows us to replicate its execution in a different domain with a little effort. We are also able to invert the task execution and to react to contingencies, by focusing the attention to the most critical prediction phases. However, replicating these cognitive processes in AI-driven robots is challenging as it needs a profound rethinking of the robot learning paradigm itself. The robot needs to understand how to act and imagine, like humans do, the possible consequences of its actions in another domain. This demands for a novel framework that embraces different levels of abstraction, starting from physical interaction with the environment, passing through active perception and understanding, and ending-up with decision-making. The INVERSE project aims to provide robots with these essential cognitive abilities by adopting a continual learning approach. After an initial bootstrap phase, used to create initial knowledge from human-level specifications, the robot refines its repertoire by capitalising on its own experience and on human feedback. This experience-driven strategy permits to frame different problems, like performing a task in a different domain, as a problem of fault detection and recovery. Humans have a central role in INVERSE, since their supervision helps limit the complexity of the refinement loop, making the solution suitable for deployment in production scenarios. The effectiveness of developed solutions will be demonstrated in two complementary use cases designed to be a realistic instantiation of the actual work environments.

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2023-DIGITAL-EMERGING-01

See all projects funded under this call

Coordinator

UNIVERSITA DEGLI STUDI DI TRENTO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 057 750,00
Address
VIA CALEPINA 14
38122 TRENTO
Italy

See on map

Region
Nord-Est Provincia Autonoma di Trento Trento
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 057 750,00

Participants (12)

My booklet 0 0