Project description
Overcoming industry challenges to boost hydrogen production
Meeting Hydrogen Europe’s 2030 targets for hydrogen production requires advancements in technology performance, durability, safety and profitability. Current technologies are not sufficiently efficient or scalable to meet growing demand. The EU-funded AEMELIA project aims to develop an advanced electrolyser, achieving high current density (1.5 A/cm²) and low energy consumption (46.2 kWh/kg), surpassing the SRIA energy-efficiency targets by 2030. The project will explore disruptive approaches such as binder-free electrodes and advanced catalyst synthesis based on the synergetic effect of chalcogenides, metallic alloys with abundant materials. Moreover, it will develop thinner membranes with high stability and low permeability. Overall, AEMELIA seeks to reduce the LCOH to 2.5 €/kg, thereby attracting investment for upscaling post-project, generating revenue and reducing CO2 emissions compared to conventional methods.
Objective
AEMELIA accepts the challenge to design and prototype AEMEL that meets and surpasses Hydrogen Europe’s 2030 targets for performance, durability, safety and cost. AEMELIA proposes a clear path to reach high current-density (1.5 A cm-2) and low voltage (1.75 V). Energy-efficiency surpasses the 2030 target (46.9 kWh/kg, or 85% of maximum theoretical efficiency), to make 3 times more H2 with less energy compared to XY. LCOH also outshines 2030 targets at 2.5€/kgH2 (17% lower than 2030 target). The degradation rate meets the 2030 target, enabling a 10-year lifetime. These and other KPIs will be validated via the TRL4 prototype of a 5-cell stack at 100 cm² that will deliver 7.2 Nm3/day of H2 at a purity of 99.9% at 15 bar.
The team will develop and test disruptive materials, such as fluorine-free ionomers ; thin, highly-conducting membranes ; PGM-free recombination catalysts ; and ionomer-free electrodes. These components are based on earth-abundant, safe materials. They would be fully scalable via existing manufacturing processes. They will be combined in innovate cell designs, taking into account novel flow-field design based on CFD models. Innovative operating conditions such as high operating temperature and pulsed current will increase energy-efficiency while reducing balance of plant (BoP) and will be tested in single cells, as will the use of impure water for improved LCA and cost. Lastly, disruptive methods for AI-based ionomer development and the measurement of the catalytically-active surface area of non-PGM catalysts will be developed.
Performance, durability, LCA and cost KPIs will be shared with companies to convince them to invest in upscaling after the project. Partners have many success stories in developing disruptive electrochemical materials and systems and bringing them to market. AEMELIA’s market penetration in 2031 is expected to generate 527 M€ in revenues by 2036, and 1172 kt CO2/year avoided compared to steam methane reforming.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences organic chemistry aliphatic compounds
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JTI-CLEANH2-2023-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.