Objective
The reduction of the environmental footprint of aviation relies on the development and fast deployment of lighter and more efficient polymer composite structures; however, the current configurations of composite aerospace structures result in a highly constrained design space. Additionally, the limitations of the state-of-the-art analysis methods result in overly conservative designs and in time-consuming certification methodologies. As a result, composite laminates have only contributed to modest weight savings in aircraft structures. Based on these observations, the main objective of the project is to unleash the full potential of composite systems to yield more efficient aerospace composite structures. The premise is that polymer composite laminates are far from being used to their full potential, and that significant performance improvements of composite aerospace structures can be obtained by developing a new systems-thinking methodology that will link the different scales of a composite system. The methodology relies on the combination of new experimental studies, conducted at the micro-scale of the composite material, that will guide the development of analysis methods at different spatial scales. The theoretical developments, guided by experiments and computations, will create the building blocks of a neural network that will unravel the currently hidden relations between manufacturing conditions, micro- and meso-structures of a composite material, and the performance of a composite structure. Overcoming this knowledge gap will enable the development of new, non-conventional micro-structures using different types of reinforcing fibres, and of new laminate configurations that will not be restrained by a limited set of fibre orientation angles. It is expected that, for the first time, the discontinuity between material design and structural design will be removed, opening new avenues for concurrent optimization of composite materials and structures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences chemical sciences polymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4200-465 PORTO
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.