Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Assumption-Lean (Causal) Modelling and Estimation: A Paradigm Shift from Traditional Statistical Modelling

Descripción del proyecto

Revolucionar la modelización estadística

La modelización estadística desempeña un papel fundamental en muchos sectores, ya que mejora la calidad del análisis de datos, facilita su lectura y comprensión y ofrece información clave sobre los datos recopilados. El equipo del proyecto ACME, financiado por el CEI, pretende revolucionar la modelización estadística introduciendo un paradigma vanguardista y transformador que mejore significativamente el análisis de datos. En el proyecto se desarrollará un marco de modelización basado en supuestos diseñado para maximizar la interpretabilidad y minimizar los sesgos, incluso en presencia de errores de especificación del modelo. Los investigadores explorarán y aplicarán el aprendizaje sin sesgos para crear nuevos estimadores y estrategias que aborden las limitaciones actuales. En última instancia, los resultados tienen el potencial de mejorar numerosas ciencias empíricas al proporcionar nuevas y potentes herramientas que podrían impulsar avances significativos.

Objetivo

I propose a cutting-edge and transformative paradigm for statistical modelling that is crucial to enhance the quality of data analyses. Leveraging my expertise in causal inference and semiparametric statistics, I will establish the fundamental principles of a comprehensive estimation theory, which maps model parameters onto generic, interpretable, model-free estimands (e.g. association or effect measures) with favourable efficiency bound, and harnesses the power of debiased (statistical/machine) learning techniques to estimate these. My core objective is to develop a flexible and accessible data modelling framework, called ‘assumption-lean modelling’. This framework will deliver minimal bias and maximal interpretability, even in the presence of model misspecification, along with honest confidence bounds that account for model uncertainty.

Debiased learning is at the core of this research. While gaining popularity, a rigorous scientific optimality theory is lacking. I shall draw on my expertise in (bias-reduced) double robust estimation to develop optimal debiased learning estimators. These utilize learners that optimize strategically chosen loss functions to achieve low variance and high stability, along with confidence intervals that are valid under weak conditions on the learners.

I will connect to timely, exciting developments in statistics, such as debiased learning of function-valued parameters and the construction of confidence bounds for such parameters. I will offer novel avenues into these problems by incorporating the assumption-lean modelling principles and connecting to real-world needs.

I will develop assumption-lean modelling strategies to tackle significant challenges in causal modelling, including target trial emulation, causal mediation analysis, and statistical modelling of dependent outcomes. I will deliver methods with potential impact on all empirical sciences, as well as on the foundations of the discipline of statistical modelling.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2023-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

UNIVERSITEIT GENT
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 445 063,00
Dirección
SINT PIETERSNIEUWSTRAAT 25
9000 GENT
Bélgica

Ver en el mapa

Región
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 445 063,00

Beneficiarios (1)

Mi folleto 0 0