Objective
Anaerobic bacteria, a group of microorganisms that thrive in the absence of oxygen, have a significant impact on the quality of life on Earth. They play a crucial role in biotechnology and are essential components of the gut microbiota. As such, they are of tremendous importance for human, animal, and environmental health. On the other hand, certain anaerobes can be life-threatening pathogens.
In light of this, there is an urgent need for a deeper understanding of the specialized metabolites of anaerobes, which could function as chemical mediators, virulence factors, and antibiotics. Although genome analyses indicate that anaerobic bacteria hold an enormous potential for producing structurally unique compounds, biosynthetic gene clusters are typically downregulated or silent under laboratory conditions. Synthetic biology approaches to unearth these cryptic pathways have been hampered by the lack of universal activation strategies, the cumbersome genetic tractability of anaerobes, and the incompatibility of standard expression systems with the oxygen-sensitive biosynthetic enzymes.
The AnoxyGen project seeks to unearth the vast structural wealth of natural products from the anaerobic world and leverage their unique biosynthetic machinery using a highly versatile anaerobic expression platform. This ambitious initiative comprises four work packages aimed at refining synthetic biology tools, creating gain-of-function anaerobes, discovering novel drug candidates and virulence factors, and engineering biosynthetic pathways to create metabolic diversity.
By achieving these objectives, AnoxyGen will grant a comprehensive overview on specialized metabolites and biocatalysts of anaerobes, which have great translational value for medicine, ecology, and biotechnology. In addition to providing valuable methods and tools to the scientific community, this project has the potential to bring significant benefits for the health and well-being of people, animals, and the environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences ecology
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs antibiotics
- natural sciences chemical sciences catalysis biocatalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
07745 Jena
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.