Objective
As living beings move, touch, or grow, the tissues within them are subject to mechanical stresses that act over minutes, hours, or days. These efforts play a critical role at all stages of life, from early embryonic development to homeostasis in adult tissues or disease progression. Mechanobiology has emerged in response to this realization and has led to many discoveries on mechanosensitive pathways in individual cells. However we are still very far from relating the single-cell behavior to the response within a real tissue that contains mixtures of cell types which are organized in complex 3D structures. In this project we will expand mechanobiology to 3D tissues by developing a new class of micro-devices, based on soft robotics and metamaterials, for active mechanical forcing of spheroids and organoids. We will couple this active forcing with multiscale cytometry methods that we have pioneered, in addition to concepts from many-body soft matter physics. This will allow us to understand how the rheological responses of individual cells add up to result in the global tissue rheology. The outcome is a new paradigm to probe phenotypic changes, e.g. the epithelial-mesenchymal transition in a cancer model or the cellular differentiation and 3D organization in a maturing organoid. Conversely we will map how global mechanical stresses are transferred to individual cells that in turn respond to the forces locally. This will allow us to engineer dynamical forcing strategies to guide the biological response of specific populations within a complex co-culture. When applied to developing organoids this will lead to strategies to mature individual cell types, in view of using them for cell therapy. In the case of cancer models we will identify mechanosensitive pathways that can be targeted by drugs to treat real tumors. By working on the joint cutting edge of technology, physics, and biology, we will manipulate in vitro models with real impact on human health.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91128 PALAISEAU CEDEX
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.