Project description
Unravelling the evolution of the neuro-muscular system
The neuro-muscular system, which encompasses the interaction between neurons and muscles, is crucial for animal motility, body shape and behaviour. Despite its importance, the evolutionary origins and development of various neuronal and muscular cell types remain unclear. The ERC-funded EvoNEUROMUSCLE project will investigate the evolutionary origins and development of the neuro-muscular system in metazoans. Using advanced techniques, researchers aim to identify ancestral versus independently evolved neuro-muscular modules and their interactions. Project findings will provide important insight into the plasticity of these systems at the single-cell level and improve our understanding of the evolution of complex animal body plans.
Objective
Muscles and neurons are a major hallmark of animals and given their impact on the organisms motility, the emergence of an interacting neuro-muscular system has tremendously shaped the evolution of animal body plans and behavioral repertoire. Neurons and muscle cells closely interact and likely have co-evolved. Yet, the evolutionary origin of different neuronal and muscular cell types remains elusive, mainly due to a lack of thorough studies in basal metazoans. In this project, I aim to unravel the evolutionary origin, architecture, regulation and systemic properties of the neuro-muscular system by a broad comparative approach among non-bilaterians, and by a deeper functional dissection in two model cnidarians, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica. By comparing single cell transcriptomes, we will reveal common or distinct molecular profiles of neurons and muscles in early branching, non-bilaterian species (i.e. Porifera, Ctenophora, Cnidaria) and bilaterians (i.e. all other animals), allowing us to identify ancestral versus independently evolved neuro-muscular modules comprised of specifically interacting cells. We will then use genome editing, transgenics and newly developed functional tools to unravel the architecture of the cnidarian neuro-muscular system on single cell resolution, the function of specific neuronal and muscle populations, their plasticity and regenerative capacity. We hypothesize to identify common cellular network modules allowing for fast and slow neuro-muscular regulation in bilaterians and non-bilaterians, which may be ancestral or convergently evolved in different animal lineages. The expected outcome will impact our understanding of the evolution of organisms with complex body plans.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
1010 Wien
Austria