Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Unravelling the evolutionary origin, architecture, development and regulation of neuromuscular systems

Project description

Unravelling the evolution of the neuro-muscular system

The neuro-muscular system, which encompasses the interaction between neurons and muscles, is crucial for animal motility, body shape and behaviour. Despite its importance, the evolutionary origins and development of various neuronal and muscular cell types remain unclear. The ERC-funded EvoNEUROMUSCLE project will investigate the evolutionary origins and development of the neuro-muscular system in metazoans. Using advanced techniques, researchers aim to identify ancestral versus independently evolved neuro-muscular modules and their interactions. Project findings will provide important insight into the plasticity of these systems at the single-cell level and improve our understanding of the evolution of complex animal body plans.

Objective

Muscles and neurons are a major hallmark of animals and given their impact on the organisms motility, the emergence of an interacting neuro-muscular system has tremendously shaped the evolution of animal body plans and behavioral repertoire. Neurons and muscle cells closely interact and likely have co-evolved. Yet, the evolutionary origin of different neuronal and muscular cell types remains elusive, mainly due to a lack of thorough studies in basal metazoans. In this project, I aim to unravel the evolutionary origin, architecture, regulation and systemic properties of the neuro-muscular system by a broad comparative approach among non-bilaterians, and by a deeper functional dissection in two model cnidarians, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica. By comparing single cell transcriptomes, we will reveal common or distinct molecular profiles of neurons and muscles in early branching, non-bilaterian species (i.e. Porifera, Ctenophora, Cnidaria) and bilaterians (i.e. all other animals), allowing us to identify ancestral versus independently evolved neuro-muscular modules comprised of specifically interacting cells. We will then use genome editing, transgenics and newly developed functional tools to unravel the architecture of the cnidarian neuro-muscular system on single cell resolution, the function of specific neuronal and muscle populations, their plasticity and regenerative capacity. We hypothesize to identify common cellular network modules allowing for fast and slow neuro-muscular regulation in bilaterians and non-bilaterians, which may be ancestral or convergently evolved in different animal lineages. The expected outcome will impact our understanding of the evolution of organisms with complex body plans.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

UNIVERSITAT WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 076,00
Address
UNIVERSITATSRING 1
1010 WIEN
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 076,00

Beneficiaries (1)

My booklet 0 0