Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Revealing the mechanics of sub-critical rock cracking of mountains cliffs from environmental forcings by imaging stress cycles from dense acoustic arrays

Project description

A closer look at rock cracking to prevent rockfalls

Rockfalls modify landscapes and threaten infrastructures and people. The traditional view of rock failing when stress exceeds a yield limit is challenged by observations of sub-critical cracking, where gradual stress accumulation causes cracks to develop well below this yield stress. Factors like temperature fluctuations and precipitation contribute to incremental failures but limited quantitative data hampers understanding of processes. The ERC-funded project CRACK THE ROCK aims to address this gap by employing an innovative multisensory acoustic imaging technique on natural rock outcrops. This will enable monitoring of stress changes and crack production with high spatial and temporal resolution, ultimately enhancing predictions of rockfalls and assessing the effects of climate change on rock erosion.

Objective

The general idea that a rock mass cracks when the external stress-loading exceeds the rock strength, leading to catastrophic failure (critical cracking), is challenged when considering outcrop erosion. Many observations in the field and the laboratory evidence slow, incremental crack developments well below the yield stress of the material, for which repetitive stress load and fatigue induce progressive failure, also called sub-critical cracking. It is largely accepted that the weather (temperature changes, rain, frost) is a major source of stress cycles and slow cumulative damage, but the literature shows too limited quantitative field observations to confirm the mechanics behind rock outcrop cracking. Today, we cannot predict rockfalls nor quantify the relation between daily or seasonal weather forcings to rock crack production. And yet, rock fracturing plays a leading role in most surface processes, from landscape building to vegetation, hydrology and natural hazard prediction. There is an urgent need to reveal the mechanics of sub-critical failure within rock outcrops. Fracturing processes initiate and develop at small scales (from the grain size to a few mm), and meteorological forcing evolve over daily to seasonal time scales, but existing field observation tools hardly meet these scales. In order to lift this issue, the project will deploy an original active multisensory acoustic imaging technique on natural rock outcrops, to map and monitor stress changes and crack production (in m2/m3/time) over timescales ranging from a few hours to a few months, with a centimetric spatial resolution and a stress sensitivity down to a few kPa. Stress will be deduced from acoustic waves, thanks to the acousto-elasticity principle, allowing us to determine the physics of sub-critical cracking of rock outcrops in their natural environment. This work will pave the way for predicting rockfalls and, further, the impact of climate change on rock erosion.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 360 718,75
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 496 170,00

Beneficiaries (3)

My booklet 0 0