Project description
Probing the limits of particle physics
The Standard Model of particle physics successfully describes the fundamental building blocks of matter and their interactions, yet it accounts for only 15 % of the mass of the universe, leaving dark matter unexplained. As we seek to extend our understanding of the universe, the need for precise measurements of the Standard Model’s parameters becomes crucial, especially in the absence of direct observations of new particles. The ERC-funded Zeptometry project aims to enhance the determination of the weak mixing angle (a vital parameter sensitive to new physics) using data from the Large Hadron Collider and the MESA accelerator. By improving theoretical predictions and combining measurements across energy scales, Zeptometry seeks to uncover potential new physics at unprecedented scales.
Objective
The theory of elementary particle physics, the Standard Model (SM), provides a successful description of the basic constituents of matter and the forces acting between them. However, it explains only about 15 % of the total mass in the universe, not accounting for the dark matter postulated in the face of astrophysical and cosmological data. The study of the universe at large shows that our theory of the smallest entities of Nature must be extended.
In the absence of a direct observation of new particles it becomes increasingly important to determine the parameters of the SM with the highest possible precision, as new particles and forces would modify their values through quantum effects. The existence of the W and Z bosons, and later the top quark, the tau neutrino, and the Higgs boson - the ultimate discovery of the SM - were all inferred from precision measurements before their direct observations.
A cornerstone parameter of the SM is the so-called weak mixing angle, which relates different sectors of the theory and is particularly sensitive to new physics. The objective of this project is to greatly improve its determination, at energy scales spanning four orders of magnitude, combining information from the LHC with low-energy data from the MESA accelerator. Detector techniques developed for the LHC will be used to optimise the measurements at low energy. The combination of all measurements will test the energy dependence of the weak mixing angle, below the Z peak, on the resonance, and for the first time above the Z, towards the weak scale.
Reaching these objectives requires improving theoretical predictions in the SM beyond the current state of the art, reducing the associated uncertainties. The simultaneous interpretation of the weak mixing angle determinations at all energies will test the SM, and probe new physics with sensitivity to mass scales ranging from 70 MeV up to the order of 100 TeV, corresponding to length scales of a zeptometer.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics neutrinos
- natural sciences physical sciences theoretical physics particle physics quarks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.