Objective
The lack of reliable in vitro pre-clinical models represents a critical aspect unanimously recognized by the scientific community as detrimental in the pathway of bringing new medications from the laboratory to the bedside: addressing this issue would provide immense benefits to drug discovery and development processes, by ethically limiting animal testing and drastically reducing costly failures in clinical trials. To date, most in vitro models fail at recapitulating the physiological microenvironment, and this often results in misleading data withdrawal. Starting from my prototype of real scale, dynamic and biomimetic blood-brain barrier model, in this project I aim at the validation of my system, after an upgrade step consisting in embedding sensing features in the platform, thus allowing a real-time evaluation of barrier formation and integrity maintenance. Characterized by microcapillary size/fenestrations and fluid flows similar to the in vivo physiological barrier, my tool will represent a drastic innovation over other well-established models in the literature and available on the market, allowing a reliable reproduction of the physiological environment and an accurate estimation of the amount of drug and/or nanomaterial concentration delivered through the barrier. Validation will be performed in relevant conditions, by implementing stroke and brain cancer models. All artificial components will be fabricated through two-photon polymerization (2pp), a disruptive mesoscale lithography technique that allows the fast fabrication of low-cost structures with resolution up to the nanometer scale, as well as great levels of scaffold reproducibility/accuracy. The proposed platform can be easily adopted in research laboratories and pharmaceutical industries as an advanced pre-clinical model, the primary biomedical applications of which consist in reliable screenings of drugs against pathologies of the central nervous system.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine neurology stroke
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-POC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
16163 GENOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.