Objectif
Efficient algorithms are vital for dealing with the ever growing amounts of data in our modern world. A particularly tricky task is posed by so-called combinatorial problems, where objects need to be combined together to form a solution satisfying some specified constraints. Increasing data size quickly causes an exponential growth in the search space for such problems, and despite decades of effort no algorithms have been designed that are guaranteed to tame this combinatorial explosion. In practice, however, it is often possible to find algorithmic shortcuts that work reasonably well, although there is very limited scientific understanding of when and why this is the case. This points to a fundamental challenge: We need a better understanding of the power and limitations of modern algorithm design.
An important tool for algorithm analysis is to describe its method of reasoning in a formal proof system. When the algorithm terminates, the execution trace can be viewed as a proof of correctness of the result computed. If we can prove mathematically that no short proofs exist for certain types of statements, then this shows that the algorithm cannot possibly solve the corresponding problems efficiently.
The goal of this project is to shed light on proof systems corresponding to some of the most powerful algorithmic paradigms in wide use and to delineate their potential. One concrete objective is to study combinatorial and algebraic methods for solving well-known graph problems such as Clique. Another goal is to compare semidefinite programming to traditional algorithms for solving non-Gaussian component analysis (NGCA), a fundamental problem in statistical learning. I will do so by strengthening existing techniques for analyzing these proof systems and combining them in novel ways. In particular, one important challenge will be to study the setting where the power of a proof system needs to be understood for a distribution of problems from which the input is drawn.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
1165 KOBENHAVN
Danemark
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.