Objective
This project aims to deliver a microfluidic platform capable of isolating bacteria and Extracellular Vesicles (EVs) at high throughput and high recovery rates from clinical samples, and perform the necessary downstream analysis for the diagnosis of diseases requiring earlier/urgent treatment. Currently, long incubation steps required for identification and susceptibility testing of pathogens make clinicians to prescribe broad-spectrum antibiotic treatments in sepsis cases upon hospital admission, and in nearly half of cases this treatment fails. On a different timescale, the lack of symptoms until late stages of some cancer types such as pancreatic cancer means a high mortality rate. Profiling molecules contained in EVs —most importantly DNA, RNA, proteins and lipids— promises a powerful diagnostic tool as biomarkers for cancer, but current EV isolation methods relying on ultracentrifugation are lengthy and can potentially damage the information enclosed. Microfluidics could provide a high yield, high throughput solution for isolation and enrichment of such particles. However, current approaches do not meet requirements of throughput and/or detection limit, and lack insightful physical understanding. I propose to use novel fluid dynamic and electrokinetic models for particle manipulation in microfluidics, with state-of-the-art fabrication methods to deliver a device capable of rapidly isolating and enriching samples containing (a) bacteria at low concentration (few hundreds per mL) to be integrated in a platform with the potential to identify and perform ASTs in possible bacterial infections in body fluids that avoid culture steps in current gold standards and potentially allow a ten-fold time reduction from sample to answer; (b) EVs to replace current ultracentrifugation methods. Thus, a future clinical implementation of the project outcomes will have large economic and societal impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- social sciences sociology demography mortality
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences biochemistry biomolecules lipids
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
41004 Sevilla
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.