Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Rashba Effect-induced non-VOLatile ferroelectric control of spin-orbit coupling in Two-dimensional materials

Objective

The surge of electronic devices in our everyday lives poses severe challenges to the sustainability of our societies. Spintronics stands at the forefront of solutions considered today by leading industrial actors to drastically improve information and communications systems' scalability and power efficiency.
In this field, most of the efforts focus on information storage based on ferromagnets (FM), readout via spin-charge interconversion (SCI) phenomena, i.e. the conversion of a spin polarisation into a detectable electrical signal, or vice-versa. However, improvements in SCI efficiency are still necessary and solutions for the electrical writing of FM still need to be more efficient and reliable. Ferroelectrics (FE), which naturally break inversion symmetry, may allow an efficient SCI when interfaced with other materials. Since FE also carry information (their electric polarisation) switchable at ultra-low power, they are ideal candidates to replace FM as the new core elements of spintronics. So far, only a few reports demonstrated the FE control of SCI at oxide interfaces or in bulk semiconductors. Due to their richness and 2D nature, van der Waals (vdW) materials and notably graphene play an increasingly important role in spintronics research, and vdW FE could be a game changer for the field, although they are still under-investigated.
REVOLT aims to study these novel FE and to achieve the non-volatile electric control of SCI in graphene proximitized with FE. Structural, electrical, and magnetotransport characterisations will be performed on atomically sharp FE/graphene stacks patterned with advanced nano-lithography techniques for which the host institution is expert. Based on these efforts, REVOLT will shed new light on fundamental physics phenomena and evaluate the potential for a paradigm change in spintronics applications while providing high-quality, interdisciplinary research and transversal skills to a young researcher for the development of his career.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN NANOCIENCIAS CIC NANOGUNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 165 312,96
Address
TOLOSA HIRIBIDEA 76
20018 San Sebastian
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0