Project description
Scalable bio-photoelectrodes for fuel production without semiconductors
The high demand for energy and the use of fossil fuels have led to increased greenhouse gas emissions and climate change. Developing photoelectrochemical devices using photosynthetic proteins could produce highly efficient and sustainable solar fuel. However, connecting electron transfer between electrodes and photosystem 1 to catalytic processes remains challenging due to fast charge recombination. With the support of the Marie Skłodowska-Curie Actions programme, the SUPERSET project will demonstrate new concepts for preventing charge recombination in scalable bio-photoelectrodes, enabling CO2 reduction and H2 production without using semiconductors. This involves designing electron acceptors based on anthraquinones, modifying the electrode surface with self-assembled monolayers, and designing osmium/cobalt-based electron donors for fast electron transfer.
Objective
The soaring demand for energy and use of fossil fuels has resulted in the release of vast amount of greenhouse gases and climate change. Developing photoelectrochemical devices for solar fuel production is one of the strategies to address these issues. The use of photosynthetic proteins as photoactive components could potentially generate highly efficient biophotoelectrodes built exclusively from earth-abundant elements, leading to a step change in sustainable solar fuel production. The extreme electron transfer rates, quantum efficiency and large charge separation of the photosynthetic protein complex photosystem 1 delivers the high energy electrons needed for CO2 fixation or H2 evolution in Nature. However, coupling electron transfer between electrodes and photosystem 1 to catalytic processes remains challenging because charge recombination of the reduced electron acceptors with the oxidized form of the electron mediators or with the electrode surface is typically faster than catalysis. The overarching aim of SUPERSET is to demonstrate for the first time the concepts of kinetic barriers and fast hole refilling through electron hopping for preventing charge recombination in scalable biophotoelectrodes and thus enable CO2 reduction and H2 production with semiconductor-free devices. Toward this aim, my specific research objectives will include: (1) Design electron acceptors based on anthraquinones to limit recombination at the electrode by taking advantage of their PCET square scheme mechanism; (2) Modify the surface of electrode by self-assembled monolayers to build a charger barrier to prevent the charge recombination of the reduced electron acceptors with the electrode; (3) Design Osmium/Cobalt-based electron donors with extremely fast electron transfer to enable the refilling of the hole produced by photosystem 1 before recombination takes place; (4) Combine the electron donor and electron acceptor to be channeled to an enzyme for CO2 reduction or H2 production.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences catalysis
- engineering and technology environmental engineering energy and fuels
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.