Project description
Reusable magnetic chiroplasmonic nanocatalysts for anticancer drugs
Catalysis is crucial for sustainable chemical manufacturing and the production of affordable, life-saving drugs. However, challenges arise in anticancer drug synthesis due to the asymmetric nature of biological processes. Chiral plasmonic nanoparticles (NPs) show promise with their unique optical properties. Integrating magnetic properties into these NPs could facilitate easy removal and recycling, thus reducing chemical waste. However, this combination remains unexplored. With support from the Marie Skłodowska-Curie Actions programme, the LYMON project will improve chiral nanocatalyst construction using a laser-based method. This will create reusable magnetic chiroplasmonic nanocatalysts, reducing side reactions and enhancing control over pharmaceutical production, particularly for anticancer drugs. It will also advance synthetic chemistry and enable the production of selective molecules.
Objective
Catalysis holds immense significance in chemical manufacturing, being a key player in developing sustainable industrial processes with limited energy & resource consumption. In pharmaceutical industry, catalysis is crucial for enabling mass production of affordable life-saving drugs. However, developing efficient catalysts for this sector poses a formidable challenge due to the inherent asymmetry of many biological processes. This is particularly critical in producing anticancer drugs because their synthesis relies on intermediates or reactions whose asymmetric nature, known as chirality, withholds their massive production, limiting equal global access to best health treatments.
An up-and-coming solution to address this dilemma is resorting to chiral plasmonic nanoparticles (NPs), as their outstanding optical rotation activity makes them well-suited for applications like polarization-sensitive photocatalysis, especially in the context of anticancer drug development. However, unleashing its full potential hinges on imbuing these chiral NPs with unusual properties like magnetism, allowing safe removal from products & recyclability without generating chemical waste. To date, creating a plasmonic structure that seamlessly integrates chirality with magnetic motility remains largely underexplored.
The LYMON project addresses this conundrum by expanding the repertoire of chiral nanocatalyst construction methods through a groundbreaking laser-based pathway. This innovative approach, supported both experimentally & theoretically, promises to bring a new generation of highly specific magnetic chiroplasmonic nanocatalysts characterized by their ability to be reused multiple times. All of this permiting reducing wasteful side reactions & improving control over pharmaceutical production, especially for anticancer drugs. Moreover, it promises to expand the horizons of synthetic chemistry, paving the way for cutting-edge routes to produce highly efficient & selective molecules.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis photocatalysis
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
35122 PADOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.