Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Carbon-Based Materials Development for Sulfur Cathodes and High-Capacity Lithiated Silicon Anodes in LiSi-S Batteries

Project description

Advancing battery tech for electric vehicles

Global warming, rising emissions, and the need for sustainable energy solutions have made the development of high-energy density batteries crucial. Current lithium-ion (Li-ion) batteries used in electric vehicles fall short in providing the extended range required to fully replace combustion engines. With the support of the Marie Skłodowska-Curie Actions programme, the SALSA project will develop lithium-sulphur (Li-S) batteries, which offer higher energy density. To address safety concerns, the project focuses on silicon-based anodes and sulphur cathodes, aiming for a capacity of 600 mAh/g and a cycle life of over 500 cycles. Collaborative efforts from research teams in Ireland, Czechia, and Slovakia are driving the development of a sustainable battery solution for the future of electric vehicles.

Objective

The reduction of global warming, decreasing emissions from combustion engines, and sustainable energy are the imperatives of our times. Thus, the demand for high-energy density batteries is increasing in an effort to accelerate global electrification. Currently, electric vehicles (EVs) rely on lithium-ion (Li-ion) batteries, however, there is an urgent requirement for longer range EVs that can truly displace combustion engines. To do this, an increase in battery energy density and cycle life is sought by developing materials with improved capacity compared to commercial materials. A promising alternative to Li-ion technologies are lithium-sulphur (Li-S) batteries thanks to their high theoretical capacity. However, pure Li metal anode in Li-S batteries may be a potential safety risk due to the formation of Li dendrites which may result in an internal short-circuit. Alternative anode materials may eliminate this issue; among all the anodes, Si-based candidates show one of the highest theoretical capacities. The application of lithiated Si and S as the anode and cathode (LiSi-S) has not yet shown high capacity and viability due to a lack of material investigation. The goal of this project is to develop a novel S cathode, lithiated Si anode and assemble a LiSi-S battery with a capacity of at least 600 mAh/g and a cycle life of >500 cycles. The anode will be based on Si nanowires in order to mitigate the volumetric expansion during cycling. The cathode will have incorporated S in highly porous material to improve the cycle stability and suppress electrode material damage during cycling. All materials used will satisfy conditions of sustainability, low-cost, and safety. The ambitious project will be conducted in three different research groups in Ireland, Czechia, and Slovakia. This prestigious fellowship will provide a platform of renowned subject experts, and exposure to international collaborators will provide a unique opportunity to grow as an independent researcher.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSITY OF LIMERICK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 199 694,40
Address
NATIONAL TECHNOLOGICAL PARK, PLASSEY
- Limerick
Ireland

See on map

Region
Ireland Southern Mid-West
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0