Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

High-throughput identification of novel phage-encoded bacterial defense mechanisms against protozoan predation

Project description

Uncovering bacterial defence strategies

Bacteria are vital to ecosystems, with a single gram of soil housing up to 10 billion cells. Yet, they face constant threats from predators: protozoa, single-celled eukaryotes that consume bacteria, and bacteriophages, viruses that infect and kill them. Together, these predators destroy up to 20 % of the global bacterial population daily, driving bacteria to evolve defence mechanisms. Despite their importance, the interactions between these three groups remain poorly understood. With the support of the Marie Skłodowska-Curie Actions programme, the DictyDefense project explores how prophages (viruses integrated into bacterial genomes) help bacteria defend against protozoan predation. The project employs fluorescent assays and advanced techniques to uncover the genetic and biochemical mechanisms behind these defence strategies.

Objective

Bacteria are the backbone of natural communities. A single gram of soil may contain up to 10 billion cells. Two types of bacterial predators are also abundant: protozoa, single-celled eukaryotes that phagocytize bacteria, and bacteriophages (phages), viruses that only infect bacteria. Each day, up to 20% of the global bacterial population is killed by these two predators. This puts pressure on bacteria to adapt defense strategies, but also on each predator to out-compete the other. However, the interplay between bacteria, phages, and protozoa is rarely studied.

Certain phages can integrate into bacterial genomes, becoming prophages, and encode beneficial traits for host fitness, like protection from other phages. My hypothesis is that prophages encode defense mechanisms that may interfere with protozoan predation and protect the bacterial host, thereby indirectly benefiting the prophage.

To investigate this, I will develop a high-throughput quantitative fluorescence predation assay, using the amoeba Dictyostelium discoideum as the model protozoan. Changes in abundance of fluorescently tagged bacteria with and without defense functions will report the strength of predation defense in a large bacterial isolate panel harbouring thousands of prophages. The assay will be scaled up with robotics platforms. Gain of function screens will be used to link defense phenotype with individual genes. After prioritizing the defense hits for novel biology, the major stages of predation that are inhibited can be observed by real time tracking of interactions between fluorescently tagged cells. Biochemical and genetic follow-ups will pinpoint the exact mechanisms of defense. Proteomic, transcriptomic, and lipidomic methods will assess changes in bacterial and protozoan physiology. Overall, this proposal addresses an important blind-spot in the interactions of bacteria, protozoa, and phages and will reveal new aspects on how predatory interactions shape microbial ecosystems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

EUROPEAN MOLECULAR BIOLOGY LABORATORY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 189 687,36
Address
Meyerhofstrasse 1
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0