Project description
Strengthening neural networks and polyhedral theory connection
AI neural networks are used in modern technology. Combinatorial optimisation addresses mathematical and computer science inquiries. Polyhedral geometry serves as a potent tool for investigating their properties. Understanding polyhedral theory aids in grasping neural networks’ functionality. In this context, the MSCA-funded NeurExCo project intends to fortify the correlation between neural networks and polyhedral theory by exploring extension complexity. Its goal is to bolster the theoretical comprehension of both domains, encompassing classical combinatorial optimisation problems. The project strives to derive fresh bounds on the requisite size and depth of neural networks for solving specific problems. Drawing inspiration from neural networks, extended notions of extension complexity will yield novel structural and algorithmic insights into classical quandaries.
Objective
Artificial intelligence is changing our lives. Artificial neural networks are present and entering various fields of modern technology such as medicine, engineering, education and many more. Even a small-scale theoretical understanding of why and how neural networks succeed in practice can have a considerable impact on the future development of such technologies.
In contrast, combinatorial optimization is a well-established discipline at the intersection of mathematics and computer science, dealing with classical algorithmic questions like the Shortest Path or Traveling Salesperson Problems. A powerful tool to study structural and algorithmic properties of combinatorial optimization problems is polyhedral geometry. For example, the geometric notion of extension complexity classifies how well a specific problem can be expressed and solved via an extremely successful general-purpose technique called linear programming.
Recent developments show that polyhedral theory can also be a powerful tool to achieve a better mathematical understanding of neural networks. The overall goal of this project is to significantly intensify the connection between neural networks and polyhedral theory, using the concept of extension complexity. This new symbiosis will advance both, the theoretical understanding of neural networks as well as the fundamental understanding of classical combinatorial optimization problems. On the side of neural networks, we expect to obtain new bounds on the required size and depth to solve a given problem, serving as an explanation of why large and deep neural networks are more successful in practice. Furthermore, we expect contributions to a more refined understanding of the computational complexity to train a neural network. On the side of combinatorial optimization, we expect that generalized notions of extension complexity inspired by neural networks lead to new structural and algorithmic insights to classical problems like the matching problem.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biological behavioural sciences ethology biological interactions
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1050 Bruxelles / Brussel
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.