Description du projet
Des algorithmes pour les théories arithmétiques existentielles non linéaires
En informatique, les théories arithmétiques sont essentielles à la résolution de problèmes complexes, en particulier dans la satisfiabilité modulo des théories (SMT) et l’analyse statique. Or, ces théories impliquent souvent des algorithmes basés sur des principes mathématiques. Des obstacles telles que l’indécidabilité des problèmes impliquant une multiplication compliquent le développement de solutions efficaces. Il est donc urgent d’améliorer les algorithmes qui peuvent traiter des opérations arithmétiques non linéaires. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet NEAT concentrera ses recherches sur les opérateurs non linéaires d’exponentiation et de divisibilité. En s’appuyant sur une approche pluridisciplinaire qui inclut la théorie des automates, la combinatoire et la théorie des nombres, NEAT entend développer de robustes algorithmes qui peuvent étendre les capacités des solveurs SMT et des outils d’optimisation.
Objectif
Arithmetic theories are logical theories about systems of numbers that found important applications in several areas of computer science. For instance, those theories have a fundamental role in Satisfiability Modulo Theory (SMT), abstract interpretation and symbolic execution, the three most prominent algorithmic techniques to type check or bug test programs against rich specification languages. In optimisation, Integer Linear Programming offers a general framework to model many scheduling, planning and network problems using linear integer arithmetic. In Theoretical Computer Science, several computational problems stemming from formal logic and automata theory require arithmetic theories procedures to be solved.
Arithmetic theories are simple to describe, but their algorithms are based on profound mathematical theories. The goal of this proposal is to achieve a major advance in algorithms for decision and optimisation problems of existential arithmetic theories featuring the non-linear operators of exponentiation and divisibility. We choose to focus on these two operators for both theoretical and practical reasons. On the theory side, whereas multiplication often causes decidability issues (see e.g. the undecidability of Hilbert’s 10th problem), exponentiation and divisibility are much more algorithmically robust. On the practical side, these two non-linear operators have recently found several applications in the aforementioned areas of computer science.
To achieve our goal, our methodology combines several areas of mathematics and theoretical computer science: automata theory, combinatorics, non-convex geometry, model theory and number theory. While the content of the proposal is foundational in nature, the long-term goal is for algorithms developed during the project to serve as a basis to expand the capabilities of SMT solvers, static analysers and optimization tools, making them able to handle very expressive languages of arithmetic.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures arithmétique
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
28223 Pozuelo De Alarcon
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.