Objective
Organic conjugated materials (OCMs) possess unique electronic properties compared with other traditional semiconductor materials, due to the delocalization and high polarizability of π-electrons supporting the motion of charge carriers, as well as their significant electronic correlation and electron-phonon couplings. They present a remarkable flexibility allowing to tune their optical, electronic and mechanical properties at will through molecular engineering, making OCMs most suitable for a broad range of technical applications ranging from optoelectronics, as components of light-emitting diodes, to photovoltaic cells.
Rigidity and conjugation, as well as the interchromophoric geometry, play a crucial role in the primary energy transfer mechanisms along aconjugated polymer (i.e. through-bond or through-space processes). The strong coupling between the electronic and nuclear degrees of freedom leads to self-trapping and spatial localization of excitons, in a region whose spatial length is determined by conformational defects. Manipulating these nuclear degrees of freedom may lead to a blockade or an enhancement of energy transfer along the bond. Recent experiments have pointed out that in specific polymers exciton transfer is a coherent process rather than a sequence of incoherent hopping type events. The accurate description of these photoinduced pathways considering all degrees of freedom involved constitutes a challenge to date.
The goal of the fellowship is to advance state-of-the-art computational methods for describing the photoinduced and laser-driven, coupled electron-nuclear dynamics of large conjugated molecules, with the aim to include quantum coherence effects and to enable predictive calculations of exciton dynamics and of energy transfer in such polymeric systems.
The researcher will carry out the fellowship in the Laboratory of Collisions, Aggregates and Reactivity, University of Toulouse III, under the supervision of Dr. Nadine Halberstadt.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
31400 TOULOUSE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.