Description du projet
Mieux comprendre les écoulements à phases multiples turbulents dans les processus d’ingénierie
De nombreux processus naturels et industriels, y compris les réacteurs chimiques et l’extraction de pétrole et de gaz, impliquent au moins deux phases distinctes (liquide, gaz, solide) et présentent des mouvements turbulents. Les interactions entre ces phases peuvent être complexes et donner lieu à un large éventail de comportements et de dynamiques. La compréhension et le contrôle de ces écoulements multiphasiques turbulents sont essentiels pour optimiser les performances et l’efficacité des applications. C’est pourquoi le projet FragTuRe, financé par le CER, vise à développer une théorie universelle pour la fragmentation des gouttelettes et des bulles dans les turbulences. Il s’agit d’une approche pluridisciplinaire qui combine l’étude théorique, les techniques expérimentales et la reconstruction des formes. Les résultats du projet devraient faire progresser notre compréhension et notre contrôle des processus d’émulsification turbulente dans le domaine de l’ingénierie.
Objectif
Droplets and bubbles are omnipresent in many environmental and industrial applications that involve atomization and emulsification processes, and the ability to control the size of these dispersed elements in turbulent multiphase flows is essential for design and optimization purposes. Despite the importance of the fragmentation of one fluid in another one by turbulent eddies, a universal theory applicable to a majority of the scenarios is still missing. Following the seminal work of Hinze on characterizing the size of the largest stable droplets in turbulence known as Kolmogorov-Hinze theory, I aim to revisit this concept with a novel deterministic approach through theoretical investigation, experimental characterization, and numerical simulation. In my recent contribution, I have presented a novel description for the Hinze scale based on the concept of enstrophy transport across the scales in turbulence, which could serve as the basis for my deterministic approach to studying turbulent emulsification. By providing the theoretical basis for sustained homogenous isotropic turbulent flows, I will measure the spectral rate of enstrophy transport rates by the vortex stretching, surface tension, and other relevant mechanisms in a drop-laden turbulent flow in the lab using tomographic PIV and shape reconstruction. Furthermore, by performing direct numerical simulation (DNS), I will explore the situations where experimentation may be limited such as highly-dense emulsifications and surfactant-laden environments. The simulations will provide a large dataset based on which we could generate a universal theory for emulsification in turbulent drop-laden and bubbly flows. The FragTuRe project revisits the fundamental understanding of turbulent fragmentation by a concept that has not been employed before and aims at generating a novel case-independent universal correlation for the Hinze scale that is essential in many engineering applications.
Mots‑clés
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thème(s)
Régime de financement
HORIZON-ERC - HORIZON ERC GrantsInstitution d’accueil
4040 Linz
Autriche