Projektbeschreibung
Fortschrittliches Wissen zu turbulenten Mehrphasenströmungen in technischen Prozessen
Viele natürliche und industrielle Prozesse, darunter chemische Reaktoren und die Öl- und Gasförderung, erfolgen in zwei oder mehr Phasen (wie flüssig, gasförmig oder fest) und weisen turbulente Bewegung auf. Die Interaktionen zwischen den Phasen können komplex sein, sodass es zu zahlreichen Verhaltensweisen und Dynamiken kommt. Diese turbulenten Mehrphasenströmungen müssen erklärt und reguliert werden, um die Leistung und Effizienz von Anwendungen zu optimieren. Aus dem ERC-finanzierten Projekt FragTuRe soll eine universelle Theorie über die Fragmentierung von Tröpfchen und Bläschen bei Turbulenzen hervorgehen. Über einen multidisziplinären Ansatz werden theoretische Untersuchungen, experimentelle Verfahren und die Rekonstruktion von Formen kombiniert. Die Projektergebnisse werden das Wissen und die Kontrolle über turbulente Emulgierprozesse in der Technik vertiefen.
Ziel
Droplets and bubbles are omnipresent in many environmental and industrial applications that involve atomization and emulsification processes, and the ability to control the size of these dispersed elements in turbulent multiphase flows is essential for design and optimization purposes. Despite the importance of the fragmentation of one fluid in another one by turbulent eddies, a universal theory applicable to a majority of the scenarios is still missing. Following the seminal work of Hinze on characterizing the size of the largest stable droplets in turbulence known as Kolmogorov-Hinze theory, I aim to revisit this concept with a novel deterministic approach through theoretical investigation, experimental characterization, and numerical simulation. In my recent contribution, I have presented a novel description for the Hinze scale based on the concept of enstrophy transport across the scales in turbulence, which could serve as the basis for my deterministic approach to studying turbulent emulsification. By providing the theoretical basis for sustained homogenous isotropic turbulent flows, I will measure the spectral rate of enstrophy transport rates by the vortex stretching, surface tension, and other relevant mechanisms in a drop-laden turbulent flow in the lab using tomographic PIV and shape reconstruction. Furthermore, by performing direct numerical simulation (DNS), I will explore the situations where experimentation may be limited such as highly-dense emulsifications and surfactant-laden environments. The simulations will provide a large dataset based on which we could generate a universal theory for emulsification in turbulent drop-laden and bubbly flows. The FragTuRe project revisits the fundamental understanding of turbulent fragmentation by a concept that has not been employed before and aims at generating a novel case-independent universal correlation for the Hinze scale that is essential in many engineering applications.
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thema/Themen
Finanzierungsplan
HORIZON-ERC - HORIZON ERC GrantsGastgebende Einrichtung
4040 Linz
Österreich