Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Wildfires and Climate Change: Physics-Based Modelling of Fire Spread in a Changing World

Project description

New tools for wildfire prediction and management

Uncontrolled fires are a growing problem as climate change affects moisture and temperature, making wildfires more frequent and severe. These fires increasingly threaten homes and infrastructure, especially where urban areas meet wildlands. Despite their impact, we still lack a solid understanding of how fires spread, making it hard to predict and manage them effectively. The ERC-funded FIREMOD project aims to fill this gap. Specifically, it will create a detailed physical model to better understand and predict fire behaviour. The project will study fire across different scales, include smouldering effects, and improve small and large-scale fire models. This approach will help manage wildfires more effectively and provide valuable tools for researchers.

Objective

Fire has long been a ubiquitous and essential part of the global environment, as many ecosystems and societal life fundamentally depend on fire. Despite this, we still lack a fundamental theory of fire spread, which becomes crucial in a changing world if we want to understand and predict the occurrence of uncontrolled fires. Uncontrolled fires are a global phenomena that are becoming commonplace as changes in moisture and local temperature driven by climate change affect local fuel properties and ecosystems. As we construct more housing and industry in areas that were previously wildlands, the Wildland-Urban Interface becomes more critical as wildfires now affect infrastructure and urban systems.

The societal, scientific, and engineering problem of uncontrolled fires is a complex one: it requires the harmonisation of both engineering and environmental science methods, including combustion engineering, real time modelling, data assimilation and management, and the development of techniques that can adequately support the needs of fire management.

The aim of this proposal is ambitious, but essential to understand and predict the occurrence of uncontrolled fires: We need a fundamental physical model to understand the process of fire spread. It needs to be validated, and it needs to work for all conditions and fuel types. We will develop this physical model focusing on three different methods, in parallel:
i) Study fire across temporal and spatial scales to understand changing fire regimes, including vegetation dynamics.
ii) Understanding of fire on multiple scales will help with scaling up from small-scale fine mesh models to much larger grid sizes.
iii) Integrate the effect of smouldering combustion into modelling of fire spread.
The scientific outcomes of our work will ensure that there is a fundamental step-change in the approach of modelling wildfire ignition and spread, with the proposed methodology and tools then widely available for scientists to adapt.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

KING'S COLLEGE LONDON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 480 466,00
Address
STRAND
WC2R 2LS London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 480 466,00

Beneficiaries (1)

My booklet 0 0