Project description
Robust, low-energy reinforcement learning control of large-scale dynamical systems
Improving the energy-intensive and computationally heavy analysis of big data is a driving goal in many fields from basic research on the origins of the universe to predicting climate change or controlling large-scale dynamical systems in safety-critical engineering applications. Reinforcement learning (RL) is a promising technique to reduce the energy requirements of the last. However, linear or kernel methods do not scale well, minimising their utility to practical applications. They are also computationally intensive and thus energy hungry. The ERC-funded KoOpeRaDE project aims to leverage control theory, approximation theory and machine learning to reduce complexity and support development of innovative RL controllers for large-scale engineering systems with performance guarantees.
Objective
An unprecedented energy crisis is looming over us. In order to transition to a greener and more energy-efficient society, existing technologies need to be improved and novel techniques such as nuclear fusion developed. This requires the stabilization of aerodynamics, heat transfer or combustion and fusion processes and thus, the development of efficient control strategies for large-scale dynamical systems. In recent years, reinforcement learning (RL) has emerged as a highly promising data-driven technique. Unfortunately, we cannot trust RL to handle our most important and complex systems, since the resulting controllers do not possess performance guarantees. Certifiable RL approaches such as linear or kernel methods tend to scale poorly, such that their applicability is limited to toy examples. In contrast to other application areas, this is a complete show-stopper for safety-critical engineering. Moreover, the training is extremely data hungry and costly, due to which RL itself contributes to the energy crisis.
The vision of this project is to develop new foundational methods to equip RL controllers for large-scale engineering systems with performance guarantees by exploiting system knowledge and systematically reducing the complexity. To achieve this, I will target three major breakthroughs, consisting of (A) global linearization of the dynamics via the Koopman operator framework, (B) the extension of certified Q-learning to continuous action spaces via control quantization, and (C) the detection and exploitation of symmetries in the system dynamics.
The project requires significant joint advancements in several challenging areas such as control, approximation theory and machine learning. In the case of success, the resulting controllers will provide a massive advancement of RL towards safety-critical engineering applications and significantly contribute to the challenge of meeting the future energy demands of our society.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
44227 Dortmund
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.