Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Koopman-Operator-based Reinforcement Learning Control of Partial Differential Equations

Descripción del proyecto

Control robusto y de baja energía mediante el aprendizaje por refuerzo de sistemas dinámicos a gran escala

Mejorar el análisis de macrodatos, que consume mucha energía y requiere un gran esfuerzo informático, es un objetivo fundamental en muchos campos, desde la investigación básica sobre los orígenes del universo hasta la predicción del cambio climático o el control de sistemas dinámicos a gran escala en aplicaciones de ingeniería fundamentales para la seguridad. El aprendizaje por refuerzo (AR) es una técnica prometedora para reducir los requisitos energéticos de la horma. Sin embargo, los métodos lineales o de núcleo no se adaptan bien, lo cual minimiza su utilidad para las aplicaciones prácticas. Además, requieren muchos cálculos y, por lo tanto, mucha energía. El proyecto KoOpeRaDE, financiado por el Consejo Europeo de Investigación, pretende aprovechar la teoría del control, la teoría de la aproximación y el aprendizaje automático para reducir la complejidad y apoyar el desarrollo de controladores del AR innovadores para sistemas de ingeniería a gran escala con garantías de rendimiento.

Objetivo

An unprecedented energy crisis is looming over us. In order to transition to a greener and more energy-efficient society, existing technologies need to be improved and novel techniques such as nuclear fusion developed. This requires the stabilization of aerodynamics, heat transfer or combustion and fusion processes and thus, the development of efficient control strategies for large-scale dynamical systems. In recent years, reinforcement learning (RL) has emerged as a highly promising data-driven technique. Unfortunately, we cannot trust RL to handle our most important and complex systems, since the resulting controllers do not possess performance guarantees. Certifiable RL approaches such as linear or kernel methods tend to scale poorly, such that their applicability is limited to toy examples. In contrast to other application areas, this is a complete show-stopper for safety-critical engineering. Moreover, the training is extremely data hungry and costly, due to which RL itself contributes to the energy crisis.
The vision of this project is to develop new foundational methods to equip RL controllers for large-scale engineering systems with performance guarantees by exploiting system knowledge and systematically reducing the complexity. To achieve this, I will target three major breakthroughs, consisting of (A) global linearization of the dynamics via the Koopman operator framework, (B) the extension of certified Q-learning to continuous action spaces via control quantization, and (C) the detection and exploitation of symmetries in the system dynamics.
The project requires significant joint advancements in several challenging areas such as control, approximation theory and machine learning. In the case of success, the resulting controllers will provide a massive advancement of RL towards safety-critical engineering applications and significantly contribute to the challenge of meeting the future energy demands of our society.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2024-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

TECHNISCHE UNIVERSITAT DORTMUND
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 499 000,00
Dirección
AUGUST SCHMIDT STRASSE 4
44227 Dortmund
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Arnsberg Dortmund, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 499 000,00

Beneficiarios (1)

Mi folleto 0 0