Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Koopman-Operator-based Reinforcement Learning Control of Partial Differential Equations

Description du projet

Un contrôle robuste et peu énergivore des systèmes dynamiques à grande échelle par l’apprentissage par renforcement

L’amélioration de l’analyse des mégadonnées, gourmande en énergie et en puissance de calcul, est un objectif majeur pour de nombreux domaines, de la recherche fondamentale sur les origines de l’univers à la prévision du changement climatique, en passant par le contrôle des systèmes dynamiques à grande échelle dans les applications d’ingénierie critiques pour la sécurité. L’apprentissage par renforcement (RL) est une technique prometteuse qui pourrait réduire les besoins énergétiques de ces dernières. Les méthodes linéaires ou par noyau sont toutefois mal adaptées, ce qui réduit leur utilité pour des applications pratiques. Elles sont également très gourmands en ressources de calculs et donc en énergie. Le projet KoOpeRaDE, financé par le CER, entend exploiter la théorie du contrôle, la théorie de l’approximation et l’apprentissage automatique pour réduire la complexité et soutenir le développement de contrôleurs RL innovants pour les systèmes d’ingénierie à grande échelle offrant des garanties de performance.

Objectif

An unprecedented energy crisis is looming over us. In order to transition to a greener and more energy-efficient society, existing technologies need to be improved and novel techniques such as nuclear fusion developed. This requires the stabilization of aerodynamics, heat transfer or combustion and fusion processes and thus, the development of efficient control strategies for large-scale dynamical systems. In recent years, reinforcement learning (RL) has emerged as a highly promising data-driven technique. Unfortunately, we cannot trust RL to handle our most important and complex systems, since the resulting controllers do not possess performance guarantees. Certifiable RL approaches such as linear or kernel methods tend to scale poorly, such that their applicability is limited to toy examples. In contrast to other application areas, this is a complete show-stopper for safety-critical engineering. Moreover, the training is extremely data hungry and costly, due to which RL itself contributes to the energy crisis.
The vision of this project is to develop new foundational methods to equip RL controllers for large-scale engineering systems with performance guarantees by exploiting system knowledge and systematically reducing the complexity. To achieve this, I will target three major breakthroughs, consisting of (A) global linearization of the dynamics via the Koopman operator framework, (B) the extension of certified Q-learning to continuous action spaces via control quantization, and (C) the detection and exploitation of symmetries in the system dynamics.
The project requires significant joint advancements in several challenging areas such as control, approximation theory and machine learning. In the case of success, the resulting controllers will provide a massive advancement of RL towards safety-critical engineering applications and significantly contribute to the challenge of meeting the future energy demands of our society.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

TECHNISCHE UNIVERSITAT DORTMUND
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 499 000,00
Adresse
AUGUST SCHMIDT STRASSE 4
44227 Dortmund
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Arnsberg Dortmund, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 499 000,00

Bénéficiaires (1)

Mon livret 0 0